Astronomy:HD 179070

From HandWiki
Revision as of 15:01, 8 February 2024 by John Stpola (talk | contribs) (fixing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Star in the constellation Lyra
HD 179070
Observation data
Equinox J2000.0]] (ICRS)
Constellation Lyra[1]
Right ascension  19h 09m 26.8350s[2]
Declination +38° 42′ 50.456″[2]
Apparent magnitude (V) 8.25[3]
Characteristics
Evolutionary stage subgiant[4]
Spectral type F6 IV[4]
Apparent magnitude (J) 7.229±0.032[5]
Apparent magnitude (H) 7.031±0.023[5]
Apparent magnitude (K) 6.945±0.018[5]
Variable type Planetary transit variable[4]
Astrometry
Radial velocity (Rv)−18.173599±0.00545[6] km/s
Proper motion (μ) RA: 28.093(18)[2] mas/yr
Dec.: 28.546(20)[2] mas/yr
Parallax (π)9.2181 ± 0.0173[2] mas
Distance353.8 ± 0.7 ly
(108.5 ± 0.2 pc)
Absolute magnitude (MV)2.99[7]
Details[8]
Mass1.408+0.021
−0.030
 M
Radius1.902+0.018
−0.012
 R
Luminosity5.188+0.142
−0.128
 L
Surface gravity (log g)4.026±0.004 cgs
Temperature6,305±50 K
Metallicity [Fe/H]−0.03±0.10 dex
Rotation12.62±0.03 d[3]
Rotational velocity (v sin i)8.4±0.5[3] km/s
Age2.60±0.16 Gyr
Other designations
HIP 94112, Kepler-21, KOI-975, KIC 3632418, TYC 3120-963-1, 2MASS J19092683+3842505[9]
Database references
SIMBADdata

HD 179070, also known as Kepler-21, is a star with a closely orbiting exoplanet in the northern constellation of Lyra. At an apparent visual magnitude of 8.25 this was the brightest star observed by the Kepler spacecraft to host a validated planet until the discovery of an exoplanet orbiting HD 212657 in 2018.[3][10] This system is located at a distance of 354 light-years (109 parsecs) from the Sun based on parallax measurements, but is drifting closer with a radial velocity of −18.2 km/s.[6]

The size of HD 179070 (right) compared to the Sun (left)

The spectrum of HD 179070 presents as an evolving F-type subgiant star with a stellar classification of F6 IV.[4] This suggests the star has exhausted the supply of hydrogen at its core and is evolving into a giant star. It is an estimated 2.6[8] billion years old and is spinning with a rotation period of 12.6 days.[3] With 1.4 times the mass of the Sun it currently has 1.9 times the Sun's radius. The star is radiating five times the luminosity of the Sun from its photosphere at an effective temperature of 6,305 K.[8]

A faint nearby source was detected in 2011 and determined to be a co-moving stellar companion in 2016. Designated HD 179070 B, it lies at an angular separation of 0.75 along a position angle of 129° relative to the primary. At the distance of this star, this corresponds to a projected separation of 87 astronomical unit|AU. It is possible that this companion star had a significant influence on the exoplanet formation and subsequent orbital evolution.[11]

Planetary system

A candidate transiting exoplanet was discovered based from the first four months of photometry data from the Kepler spacecraft.[12] Confirmation was obtained in 2012 after extensive follow-up observations and analysis of the Kepler light curves.[4]

The calculated density of the planet is approximately 6.4 g·cm−3, similar to Earth's 5.5 g·cm−3, which suggests a rocky composition. With an equilibrium temperature of 2,025 Kelvin, the top few-hundred kilometers of the planet is probably molten.[3]

Calculations of the rate of orbital decay from tidal effects results in a decrease in the orbital period of 3.88 milliseconds per year, since this would be a change of only 4 seconds every thousand years it would be undetectable in any reasonable length of time.[13]

The HD 179070 planetary system[3][14]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 7.5±1.3 M 0.0427172±0.0000003 2.7858212±0.0000032 0.02±0.1 83.20+0.28
−0.26
°
1.639+0.019
−0.015
 R

References

  1. Roman, Nancy G. (1987). "Identification of a Constellation From a Position". Publications of the Astronomical Society of the Pacific 99 (617): 695–699. doi:10.1086/132034. Bibcode1987PASP...99..695R.  Vizier query form
  2. 2.0 2.1 2.2 2.3 Vallenari, A. et al. (2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics. doi:10.1051/0004-6361/202243940  Gaia DR3 record for this source at VizieR.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 López-Morales, Mercedes et al. (2016). "Kepler-21b: A Rocky Planet Around a V = 8.25 Magnitude Star". The Astronomical Journal 152 (6): 204. doi:10.3847/0004-6256/152/6/204. Bibcode2016AJ....152..204L. 
  4. 4.0 4.1 4.2 4.3 4.4 Howell, Steve B. et al. (2012). "Kepler-21b: A 1.6 REarth Planet Transiting the Bright Oscillating F Subgiant Star HD 179070". The Astrophysical Journal 746 (2): 123. doi:10.1088/0004-637X/746/2/123. Bibcode2012ApJ...746..123H. 
  5. 5.0 5.1 5.2 Skrutskie, Michael F. et al. (1 February 2006). "The Two Micron All Sky Survey (2MASS)". The Astronomical Journal 131 (2): 1163–1183. doi:10.1086/498708. Bibcode2006AJ....131.1163S.  Vizier catalog entry
  6. 6.0 6.1 Jönsson, Henrik et al. (August 17, 2020). "APOGEE Data and Spectral Analysis from SDSS Data Release 16: Seven Years of Observations Including First Results from APOGEE-South". The Astronomical Journal (American Astronomical Society) 160 (3): 120. doi:10.3847/1538-3881/aba592. ISSN 1538-3881. Bibcode2020AJ....160..120J. 
  7. Holmberg, J. et al. (July 2009). "The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics". Astronomy and Astrophysics Supplement Series 501 (3): 941–947. doi:10.1051/0004-6361/200811191. Bibcode2009A&A...501..941H. 
  8. 8.0 8.1 8.2 Silva Aguirre, V. et al. (2015). "Ages and fundamental properties of Kepler exoplanet host stars from asteroseismology". Monthly Notices of the Royal Astronomical Society 452 (2): 2127–2148. doi:10.1093/mnras/stv1388. Bibcode2015MNRAS.452.2127S. 
  9. "HD 179070". SIMBAD. Centre de données astronomiques de Strasbourg. http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=HD+179070. 
  10. Mayo, Andrew W. et al. (2018). "275 Candidates and 149 Validated Planets Orbiting Bright Stars in K2 Campaigns 0–10". The Astronomical Journal 155 (3): 136. doi:10.3847/1538-3881/aaadff. Bibcode2018AJ....155..136M. 
  11. Ginski, C. et al. (April 2012). "A lucky imaging multiplicity study of exoplanet host stars". Monthly Notices of the Royal Astronomical Society 421 (3): 2498–2509. doi:10.1111/j.1365-2966.2012.20485.x. Bibcode2012MNRAS.421.2498G. 
  12. Borucki, William J. et al. (2011). "Characteristics of Planetary Candidates Observed by Kepler. II. Analysis of the First Four Months of Data". The Astrophysical Journal 736 (1): 19. doi:10.1088/0004-637X/736/1/19. Bibcode2011ApJ...736...19B. 
  13. Luna, S. H. et al. (September 2020). "The dynamical evolution of close-in binary systems formed by a super-Earth and its host star". Astronomy & Astrophysics 641: A109. doi:10.1051/0004-6361/201936551. Bibcode2020A&A...641A.109L. 
  14. Bonomo, A. S. et al. (April 2023). "Cold Jupiters and improved masses in 38 Kepler and K2 small-planet systems from 3661 high-precision HARPS-N radial velocities. No excess of cold Jupiters in small-planet systems". Astronomy & Astrophysics. doi:10.1051/0004-6361/202346211. 

Coordinates: Sky map 19h 09m 26.8351s, +38° 42′ 50.455″