Arithmetic function: Difference between revisions

From HandWiki
imported>JMinHep
simplify
 
S.Timg (talk | contribs)
url
 
Line 1: Line 1:
{{list|date=July 2020}}
{{list|date=July 2020}}
{{short description|Function whose domain is the positive integers}}
{{short description|Function whose domain is the positive integers}}
In [[Number theory|number theory]], an '''arithmetic''', '''arithmetical''', or '''number-theoretic function'''<ref>{{harvtxt|Long|1972|p=151}}</ref><ref>{{harvtxt|Pettofrezzo|Byrkit|1970|p=58}}</ref> is generally any [[Function (mathematics)|function]] ''f''(''n'') whose domain is the [[Natural number|positive integers]] and whose range is a [[Subset|subset]] of the [[Complex number|complex number]]s.<ref>Niven & Zuckerman, 4.2.</ref><ref>Nagell, I.9.</ref><ref>Bateman & Diamond, 2.1.</ref> Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of ''n''".<ref>Hardy & Wright, intro. to Ch. XVI</ref> There is a larger class of number-theoretic functions that do not fit this definition, for example, the [[Prime-counting function|prime-counting function]]s. This article provides links to functions of both classes.
{{log(x)}}
In [[Number theory|number theory]], an '''arithmetic''', '''arithmetical''', or '''number-theoretic function'''<ref>{{harvtxt|Long|1972|p=151}}</ref><ref>{{harvtxt|Pettofrezzo|Byrkit|1970|p=58}}</ref> is generally any [[Function (mathematics)|function]] whose [[Domain of a function|domain]] is the set of [[Natural number|positive integers]] and whose range is a [[Subset|subset]] of the [[Complex number|complex number]]s.<ref>Niven & Zuckerman, 4.2.</ref><ref>Nagell, I.9.</ref><ref>Bateman & Diamond, 2.1.</ref> Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of ''n''".<ref>Hardy & Wright, intro. to Ch. XVI</ref> There is a larger class of number-theoretic functions that do not fit this definition, for example, the [[Prime-counting function|prime-counting function]]s. This article provides links to functions of both classes.


An example of an arithmetic function is the [[Divisor function|divisor function]] whose value at a positive integer ''n'' is equal to the number of divisors of ''n''.
An example of an arithmetic function is the [[Divisor function|divisor function]] whose value at a positive integer ''n'' is equal to the number of divisors of ''n''.
Line 7: Line 8:
Arithmetic functions are often extremely irregular (see table), but some of them have series expansions in terms of [[Ramanujan's sum]].
Arithmetic functions are often extremely irregular (see table), but some of them have series expansions in terms of [[Ramanujan's sum]].


==Multiplicative and additive functions==
== Multiplicative and additive functions ==
An arithmetic function ''a'' is
An arithmetic function ''a'' is
* '''completely additive''' if ''a''(''mn'') = ''a''(''m'') + ''a''(''n'') for all natural numbers ''m'' and ''n'';
* '''completely additive''' if ''a''(''mn'') = ''a''(''m'') + ''a''(''n'') for all natural numbers ''m'' and ''n'';
* '''completely multiplicative''' if ''a''(''mn'') = ''a''(''m'')''a''(''n'') for all natural numbers ''m'' and ''n'';
* '''completely multiplicative''' if ''a''(1) = 1 and ''a''(''mn'') = ''a''(''m'')''a''(''n'') for all natural numbers ''m'' and ''n'';


Two whole numbers ''m'' and ''n'' are called coprime if their greatest common divisor is 1, that is, if there is no [[Prime number|prime number]] that divides both of them.
Two whole numbers ''m'' and ''n'' are called coprime if their [[Greatest common divisor|greatest common divisor]] is 1, that is, if there is no [[Prime number|prime number]] that divides both of them.


Then an arithmetic function ''a'' is
Then an arithmetic function ''a'' is
* '''[[Additive function|additive]]''' if ''a''(''mn'') = ''a''(''m'') + ''a''(''n'') for all coprime natural numbers ''m'' and ''n'';
* '''[[Additive function|additive]]''' if ''a''(''mn'') = ''a''(''m'') + ''a''(''n'') for all coprime natural numbers ''m'' and ''n'';
* '''multiplicative''' if ''a''(''mn'') = ''a''(''m'')''a''(''n'') for all coprime natural numbers ''m'' and ''n''.
* '''[[Multiplicative function|multiplicative]]''' if ''a''(1) = 1 and ''a''(''mn'') = ''a''(''m'')''a''(''n'') for all coprime natural numbers ''m'' and ''n''.


==Notation==
== Notation ==
In this article, <math display="inline">\sum_p f(p)</math> and <math display="inline">\prod_p f(p)</math> mean that the sum or product is over all [[Prime number|prime number]]s:
In this article, <math display="inline">\sum_p f(p)</math> and <math display="inline">\prod_p f(p)</math> mean that the sum or product is over all [[Prime number|prime number]]s:
<math display="block">\sum_p f(p) = f(2) + f(3) + f(5) + \cdots</math>
<math display="block">\sum_p f(p) = f(2) + f(3) + f(5) + \cdots</math>
Line 34: Line 35:
<math display="block">\prod_{p^k\mid 24} f(p^k) = f(2) f(3) f(4) f(8). </math>
<math display="block">\prod_{p^k\mid 24} f(p^k) = f(2) f(3) f(4) f(8). </math>


==Ω(''n''), ''ω''(''n''), ''ν''<sub>''p''</sub>(''n'') – prime power decomposition==
== Ω(''n''), ''ω''(''n''), ''ν''<sub>''p''</sub>(''n'') – prime power decomposition ==
The [[Fundamental theorem of arithmetic|fundamental theorem of arithmetic]] states that any positive integer ''n'' can be represented uniquely as a product of powers of primes: <math> n = p_1^{a_1}\cdots p_k^{a_k} </math> where  ''p''<sub>1</sub> < ''p''<sub>2</sub> < ... < ''p''<sub>''k''</sub> are primes and the ''a<sub>j</sub>'' are positive integers. (1 is given by the empty product.)
The [[Fundamental theorem of arithmetic|fundamental theorem of arithmetic]] states that any positive integer ''n'' can be represented uniquely as a product of powers of primes: <math> n = p_1^{a_1}\cdots p_k^{a_k} </math> where  ''p''<sub>1</sub> < ''p''<sub>2</sub> < ... < ''p''<sub>''k''</sub> are primes and the ''a<sub>j</sub>'' are positive integers. (1 is given by the empty product.)


Line 40: Line 41:
<math display="block">n = \prod_p p^{\nu_p(n)}.</math>
<math display="block">n = \prod_p p^{\nu_p(n)}.</math>


In terms of the above the [[Prime omega function|prime omega function]]s ω and Ω are defined by
In terms of the above the [[Prime omega function|prime omega function]]s ''ω'' and Ω are defined by
{{block indent | em = 1.5 | text = ''ω''(''n'') = ''k'',}}
{{block indent | em = 1.5 | text = ''ω''(''n'') = ''k'',}}
{{block indent | em = 1.5 | text = Ω(''n'') = ''a''<sub>1</sub> + ''a''<sub>2</sub> + ... + ''a''<sub>''k''</sub>.}}
{{block indent | em = 1.5 | text = Ω(''n'') = ''a''<sub>1</sub> + ''a''<sub>2</sub> + ... + ''a''<sub>''k''</sub>.}}


To avoid repetition, whenever possible formulas for the functions listed in this article are given in terms of ''n'' and the corresponding ''p''<sub>''i''</sub>, ''a''<sub>''i''</sub>, ω, and Ω.
To avoid repetition, formulas for the functions listed in this article are, whenever possible, given in terms of ''n'' and the corresponding ''p''<sub>''i''</sub>, ''a''<sub>''i''</sub>, ''ω'', and Ω.


==Multiplicative functions==
== Multiplicative functions ==
===σ<sub>''k''</sub>(''n''), τ(''n''), ''d''(''n'') – divisor sums===
=== ''σ''<sub>''k''</sub>(''n''), ''τ''(''n''), ''d''(''n'') – divisor sums ===
'''[[Divisor function|σ<sub>''k''</sub>(''n'')]]''' is the sum of the ''k''th powers of the positive divisors of ''n'', including 1 and ''n'', where ''k'' is a complex number.
'''[[Divisor function|σ<sub>''k''</sub>(''n'')]]''' is the sum of the ''k''th powers of the positive divisors of ''n'', including 1 and ''n'', where ''k'' is a complex number.


'''σ<sub>1</sub>(''n'')''', the sum of the (positive) divisors of ''n'', is usually denoted by '''σ(''n'')'''.
'''''σ''<sub>1</sub>(''n'')''', the sum of the (positive) divisors of ''n'', is usually denoted by '''''σ''(''n'')'''.


Since a positive number to the zero power is one, '''σ<sub>0</sub>(''n'')''' is therefore the number of (positive) divisors of ''n''; it is usually denoted by '''''d''(''n'')''' or '''τ(''n'')''' (for the German ''Teiler'' = divisors).
Since a positive number to the zero power is one, '''''σ''<sub>0</sub>(''n'')''' is therefore the number of (positive) divisors of ''n''; it is usually denoted by '''''d''(''n'')''' or '''''τ''(''n'')''' (for the German ''Teiler'' = divisors).


<math display="block">\sigma_k(n) = \prod_{i=1}^{\omega(n)} \frac{p_i^{(a_i+1)k}-1}{p_i^k-1}= \prod_{i=1}^{\omega(n)} \left(1 + p_i^k + p_i^{2k} + \cdots + p_i^{a_i k}\right).</math>
<math display="block">\sigma_k(n) = \prod_{i=1}^{\omega(n)} \frac{p_i^{(a_i+1)k}-1}{p_i^k-1}= \prod_{i=1}^{\omega(n)} \left(1 + p_i^k + p_i^{2k} + \cdots + p_i^{a_i k}\right).</math>
Line 59: Line 60:
<math display="block">\tau(n) = d(n) = (1 + a_{1})(1+a_{2})\cdots(1+a_{\omega(n)}).</math>
<math display="block">\tau(n) = d(n) = (1 + a_{1})(1+a_{2})\cdots(1+a_{\omega(n)}).</math>


===φ(''n'') – Euler totient function===
=== ''φ''(''n'') – Euler totient function ===
'''φ(''n'')''', the Euler totient function, is the number of positive integers not greater than ''n'' that are coprime to ''n''.
'''''φ''(''n'')''', the Euler totient function, is the number of positive integers not greater than ''n'' that are coprime to ''n''.
 
<math display="block">\varphi(n) = n \prod_{p\mid n} \left(1-\frac{1}{p}\right)
<math display="block">\varphi(n) = n \prod_{p\mid n} \left(1-\frac{1}{p}\right)
= n \left(\frac{p_1 - 1}{p_1}\right)\left(\frac{p_2 - 1}{p_2}\right) \cdots \left(\frac{p_{\omega(n)} - 1}{p_{\omega(n)}}\right)
= n \left(\frac{p_1 - 1}{p_1}\right)\left(\frac{p_2 - 1}{p_2}\right) \cdots \left(\frac{p_{\omega(n)} - 1}{p_{\omega(n)}}\right)
.</math>
.</math>


===J<sub>''k''</sub>(''n'') – Jordan totient function===
=== ''J''<sub>''k''</sub>(''n'') – Jordan totient function ===
'''J<sub>''k''</sub>(''n'')''', the Jordan totient function, is the number of ''k''-tuples of positive integers all less than or equal to ''n'' that form a coprime (''k'' + 1)-tuple together with ''n''. It is a generalization of Euler's  totient, {{math|1=φ(''n'') = J<sub>1</sub>(''n'')}}.
'''[[Jordan totient function|''J''<sub>''k''</sub>(''n'')]]''', the Jordan totient function, is the number of ''k''-tuples of positive integers all less than or equal to ''n'' that form a coprime (''k'' + 1)-tuple together with ''n''. It is a generalization of Euler's  totient, {{math|1=''φ''(''n'') = ''J''<sub>1</sub>(''n'')}}.
<math display="block">J_k(n) = n^k \prod_{p\mid n} \left(1-\frac{1}{p^k}\right)
<math display="block">J_k(n) = n^k \prod_{p\mid n} \left(1-\frac{1}{p^k}\right)
= n^k \left(\frac{p^k_1 - 1}{p^k_1}\right)\left(\frac{p^k_2 - 1}{p^k_2}\right) \cdots \left(\frac{p^k_{\omega(n)} - 1}{p^k_{\omega(n)}}\right)
= n^k \left(\frac{p^k_1 - 1}{p^k_1}\right)\left(\frac{p^k_2 - 1}{p^k_2}\right) \cdots \left(\frac{p^k_{\omega(n)} - 1}{p^k_{\omega(n)}}\right)
.</math>
.</math>


===μ(''n'') – Möbius function===
=== ''μ''(''n'') – Möbius function===
'''μ(''n'')''', the Möbius function, is important because of the Möbius inversion formula. See Dirichlet convolution, below.
'''[[Möbius function|''μ''(''n'')]]''', the Möbius function, is important because of the [[Möbius inversion]] formula. See ''{{slink|#Dirichlet convolution}}'', below.
 
<math display="block">\mu(n)=\begin{cases}
<math display="block">\mu(n)=\begin{cases}
(-1)^{\omega(n)}=(-1)^{\Omega(n)} &\text{if }\; \omega(n) = \Omega(n)\\
(-1)^{\omega(n)}=(-1)^{\Omega(n)} &\text{if }\; \omega(n) = \Omega(n)\\
Line 80: Line 79:
\end{cases}</math>
\end{cases}</math>


This implies that μ(1) = 1. (Because Ω(1) = ω(1) = 0.)
This implies that ''μ''(1) = 1. (Because Ω(1) = ''ω''(1) = 0.)
 
===τ(''n'') – Ramanujan tau function===
'''[[Ramanujan tau function|τ(''n'')]]''', the Ramanujan tau function, is defined by its [[Generating function|generating function]] identity:


=== ''τ''(''n'') – Ramanujan tau function ===
'''[[Ramanujan tau function|''τ''(''n'')]]''', the Ramanujan tau function, is defined by its [[Generating function|generating function]] identity:
<math display="block">\sum_{n\geq 1}\tau(n)q^n=q\prod_{n\geq 1}(1-q^n)^{24}.</math>
<math display="block">\sum_{n\geq 1}\tau(n)q^n=q\prod_{n\geq 1}(1-q^n)^{24}.</math>


Although it is hard to say exactly what "arithmetical property of ''n''" it "expresses",<ref>Hardy, ''Ramanujan'', § 10.2</ref> (''τ''(''n'') is ()<sup>−12</sup> times the ''n''th Fourier coefficient in the q-expansion of the modular discriminant function)<ref>Apostol, ''Modular Functions ...'', § 1.15, Ch. 4, and ch. 6</ref> it is included among the arithmetical functions because it is multiplicative and it occurs in identities involving certain σ<sub>''k''</sub>(''n'') and ''r''<sub>''k''</sub>(''n'') functions (because these are also coefficients in the expansion of [[Modular form|modular form]]s).
Although it is hard to say exactly what "arithmetical property of ''n''" it "expresses",<ref>Hardy, ''Ramanujan'', § 10.2</ref> (''τ''(''n'') is (2''π'')<sup>−12</sup> times the ''n''th Fourier coefficient in the ''q''-expansion of the modular discriminant function)<ref>Apostol, ''Modular Functions ...'', § 1.15, Ch. 4, and ch. 6</ref> it is included among the arithmetical functions because it is multiplicative and it occurs in identities involving certain ''σ''<sub>''k''</sub>(''n'') and ''r''<sub>''k''</sub>(''n'') functions (because these are also coefficients in the expansion of [[Modular form|modular form]]s).


===''c''<sub>''q''</sub>(''n'') – Ramanujan's sum===
=== ''c''<sub>''q''</sub>(''n'') – Ramanujan's sum ===
'''[[Ramanujan's sum|''c''<sub>''q''</sub>(''n'')]]''', Ramanujan's sum, is the sum of the ''n''th powers of the primitive ''q''th roots of unity:
'''[[Ramanujan's sum|''c''<sub>''q''</sub>(''n'')]]''', Ramanujan's sum, is the sum of the ''n''th powers of the primitive ''q''th roots of unity:
<math display="block">c_q(n) = \sum_{\stackrel{1\le a\le q}{ \gcd(a,q)=1}} e^{2 \pi i \tfrac{a}{q} n}.</math>
<math display="block">c_q(n) = \sum_{\stackrel{1\le a\le q}{ \gcd(a,q)=1}} e^{2 \pi i \tfrac{a}{q} n}.</math>


Even though it is defined as a sum of complex numbers (irrational for most values of ''q''), it is an integer. For a fixed value of ''n'' it is multiplicative in ''q'':
Even though it is defined as a sum of complex numbers (irrational for most values of ''q''), it is an integer. For a fixed value of ''n'' it is multiplicative in ''q'':
:'''If ''q'' and ''r'' are coprime''', then <math>c_q(n)c_r(n)=c_{qr}(n).</math>
: '''If ''q'' and ''r'' are coprime''', then <math>c_q(n)c_r(n)=c_{qr}(n).</math>


===''ψ''(''n'') - Dedekind psi function===
=== ''ψ''(''n'') Dedekind psi function ===
The Dedekind psi function, used in the theory of modular functions, is defined by the formula
The Dedekind psi function, used in the theory of [[Modular function|modular function]]s, is defined by the formula
<math display="block"> \psi(n) = n \prod_{p|n}\left(1+\frac{1}{p}\right).</math>
<math display="block"> \psi(n) = n \prod_{p|n}\left(1+\frac{1}{p}\right).</math>


==Completely multiplicative functions==
== Completely multiplicative functions ==
===λ(''n'') – Liouville function===
=== ''λ''(''n'') – Liouville function ===
'''''λ''(''n'')''', the Liouville function, is  defined by
'''''λ''(''n'')''', the Liouville function, is  defined by
<math display="block">\lambda (n) = (-1)^{\Omega(n)}.</math>
<math display="block">\lambda (n) = (-1)^{\Omega(n)}.</math>


===''χ''(''n'') – characters===
=== ''χ''(''n'') – characters ===
All '''[[Dirichlet character]]s ''χ''(''n'')''' are completely multiplicative.  Two characters have special notations:
All '''[[Dirichlet character]]s ''χ''(''n'')''' are completely multiplicative.  Two characters have special notations:


Line 126: Line 124:
Following the normal convention for the empty product, <math>\left(\frac{a}{1}\right) = 1.</math>
Following the normal convention for the empty product, <math>\left(\frac{a}{1}\right) = 1.</math>


==Additive functions==
== Additive functions ==
===''ω''(''n'') – distinct prime divisors===
=== ''ω''(''n'') – distinct prime divisors ===
'''ω(''n'')''', defined above as the number of distinct primes dividing ''n'', is additive (see [[Prime omega function]]).
'''''ω''(''n'')''', defined above as the number of distinct primes dividing ''n'', is additive (see ''[[Prime omega function]]'').


==Completely additive functions==
== Completely additive functions ==
===Ω(''n'') – prime divisors===
=== Ω(''n'') – prime divisors ===
'''Ω(''n'')''', defined above as the number of prime factors of ''n'' counted with multiplicities, is completely additive (see [[Prime omega function]]).
'''Ω(''n'')''', defined above as the number of prime factors of ''n'' counted with multiplicities, is completely additive (see [[Prime omega function]]).


===''ν''<sub>''p''</sub>(''n'') – [[P-adic valuation|''p''-adic valuation]] of an integer ''n''===
=== ''ν''<sub>''p''</sub>(''n'') – [[P-adic valuation|''p''-adic valuation]] of an integer ''n'' ===
For a fixed prime ''p'', '''''ν''<sub>''p''</sub>(''n'')''', defined above as the exponent of the largest power of ''p'' dividing ''n'', is completely additive.
For a fixed prime ''p'', '''''ν''<sub>''p''</sub>(''n'')''', defined above as the exponent of the largest power of ''p'' dividing ''n'', is completely additive.


===Logarithmic derivative===  
=== Logarithmic derivative ===  
<math>\operatorname{ld}(n)=\frac{D(n)}{n} = \sum_{\stackrel{p\mid n}{p\text{ prime}}} \frac {v_p(n)} {p}</math>, where <math>D(n)</math> is the arithmetic derivative.
<math>\operatorname{ld}(n)=\frac{D(n)}{n} = \sum_{\stackrel{p\mid n}{p\text{ prime}}} \frac {v_p(n)} {p}</math>, where <math>D(n)</math> is the arithmetic derivative.


==Neither multiplicative nor additive==
== Neither multiplicative nor additive ==


==={{pi}}(''x''), Π(''x''), ''θ''(''x''), ''ψ''(''x'') – prime-counting functions===
=== ''π''(''x''), Π(''x''), ''ϑ''(''x''), ''ψ''(''x'') – prime-counting functions===
These important functions (which are not arithmetic functions) are defined for non-negative real arguments, and are used in the various statements and proofs of the [[Prime number theorem|prime number theorem]]. They are summation functions (see the main section just below) of arithmetic functions which are neither multiplicative nor additive.
These important functions (which are not arithmetic functions) are defined for non-negative real arguments, and are used in the various statements and proofs of the [[Prime number theorem|prime number theorem]]. They are summation functions (see the main section just below) of arithmetic functions which are neither multiplicative nor additive.


'''[[Prime-counting function|{{pi}}(''x'')]]''', the prime-counting function, is the number of primes not exceeding ''x''. It is the summation function of the [[Indicator function|characteristic function]] of the prime numbers.
'''(''x''), the [[Prime-counting function|prime-counting function]], is the number of primes not exceeding ''x''. It is the summation function of the [[Indicator function|characteristic function]] of the prime numbers.
<math display="block">\pi(x) = \sum_{p \le x} 1</math>
<math display="block">\pi(x) = \sum_{p \le x} 1</math>


A related function counts prime powers with weight 1 for primes, 1/2 for their squares, 1/3 for cubes, ... It is the summation function of the arithmetic function which takes the value 1/''k'' on integers which are the k-th power of some prime number, and the value 0 on other integers.
A related function counts prime powers with weight 1 for primes, 1/2 for their squares, 1/3 for cubes, etc. It is the summation function of the arithmetic function which takes the value 1/''k'' on integers which are the ''k''th power of some prime number, and the value 0 on other integers.
 
<math display="block">\Pi(x) = \sum_{p^k\le x}\frac{1}{k}.</math>
<math display="block">\Pi(x) = \sum_{p^k\le x}\frac{1}{k}.</math>


'''[[Chebyshev function|''θ''(''x'')]]''' and '''''ψ''(''x'')''', the Chebyshev functions, are defined as sums of the natural logarithms of the primes not exceeding ''x''.
''ϑ''(''x'') and ''ψ''(''x''), the [[Chebyshev function]]s, are defined as sums of the natural logarithms of the primes not exceeding ''x''.
<math display="block">\vartheta(x)=\sum_{p\le x} \log p,</math>
<math display="block">\vartheta(x)=\sum_{p\le x} \log p,</math>
<math display="block"> \psi(x) = \sum_{p^k\le x} \log p.</math>
<math display="block"> \psi(x) = \sum_{p^k\le x} \log p.</math>


The Chebyshev function ''ψ''(''x'') is the summation function of the von Mangoldt function just below.
The second Chebyshev function ''ψ''(''x'') is the summation function of the von Mangoldt function just below.


===Λ(''n'') – von Mangoldt function===
=== Λ(''n'') – von Mangoldt function ===
'''[[Von Mangoldt function|Λ(''n'')]]''', the von Mangoldt function, is 0 unless the argument ''n'' is a prime power {{math|''p''<sup>''k''</sup>}}, in which case it is the natural log of the prime ''p'':
'''[[Von Mangoldt function|Λ(''n'')]]''', the von Mangoldt function, is 0 unless the argument ''n'' is a prime power {{math|''p''<sup>''k''</sup>}}, in which case it is the natural logarithm of the prime ''p'':
<math display="block">\Lambda(n) = \begin{cases}
<math display="block">\Lambda(n) = \begin{cases}
\log p &\text{if } n = 2,3,4,5,7,8,9,11,13,16,\ldots=p^k \text{ is a prime power}\\
\log p &\text{if } n = 2,3,4,5,7,8,9,11,13,16,\ldots=p^k \text{ is a prime power}\\
Line 165: Line 162:
\end{cases}</math>
\end{cases}</math>


===''p''(''n'') – partition function===
=== ''p''(''n'') – partition function ===
'''[[Partition function (number theory)|''p''(''n'')]]''', the partition function, is the number of ways of representing ''n'' as a sum of positive integers, where two representations with the same summands in a different order are not counted as being different:
'''[[Partition function (number theory)|''p''(''n'')]]''', the partition function, is the number of ways of representing ''n'' as a sum of positive integers, where two representations with the same summands in a different order are not counted as being different:
<math display="block">p(n) = \left|\left\{ (a_1, a_2,\dots a_k): 0 < a_1 \le a_2 \le \cdots \le a_k\; \land \;n=a_1+a_2+\cdots +a_k \right\}\right|.</math>
<math display="block">p(n) = \left|\left\{ (a_1, a_2,\dots a_k): 0 < a_1 \le a_2 \le \cdots \le a_k\; \land \;n=a_1+a_2+\cdots +a_k \right\}\right|.</math>


===λ(''n'') – Carmichael function===
=== ''λ''(''n'') – Carmichael function ===
'''[[Carmichael function|''λ''(''n'')]]''', the Carmichael function, is the smallest positive number such that <math>a^{\lambda(n)}\equiv 1 \pmod{n}</math> &nbsp; for all ''a'' coprime to ''n''. Equivalently, it is the [[Least common multiple|least common multiple]] of the orders of the elements of the [[Multiplicative group of integers modulo n|multiplicative group of integers modulo ''n'']].
'''[[Carmichael function|''λ''(''n'')]]''', the Carmichael function, is the smallest positive number such that <math>a^{\lambda(n)}\equiv 1 \pmod{n}</math> &nbsp; for all ''a'' coprime to ''n''. Equivalently, it is the [[Least common multiple|least common multiple]] of the orders of the elements of the [[Multiplicative group of integers modulo n|multiplicative group of integers modulo ''n'']].


Line 177: Line 174:
\tfrac 1 2 \phi(n)&\text{if }n=8,16,32,64,\dots
\tfrac 1 2 \phi(n)&\text{if }n=8,16,32,64,\dots
\end{cases}</math>
\end{cases}</math>
and for general ''n'' it is the least common multiple of λ of each of the prime power factors of ''n'':
and for general ''n'' it is the least common multiple of ''λ'' of each of the prime power factors of ''n'':
<math display="block">\lambda(p_1^{a_1}p_2^{a_2} \dots p_{\omega(n)}^{a_{\omega(n)}}) = \operatorname{lcm}[\lambda(p_1^{a_1}),\;\lambda(p_2^{a_2}),\dots,\lambda(p_{\omega(n)}^{a_{\omega(n)}}) ].</math>
<math display="block">\lambda(p_1^{a_1}p_2^{a_2} \dots p_{\omega(n)}^{a_{\omega(n)}}) = \operatorname{lcm}[\lambda(p_1^{a_1}),\;\lambda(p_2^{a_2}),\dots,\lambda(p_{\omega(n)}^{a_{\omega(n)}}) ].</math>


===''h''(''n'') – Class number===
=== ''h''(''n'') – class number ===
'''[[Ideal class group|''h''(''n'')]]''', the class number function, is the order of the [[Ideal class group|ideal class group]] of an algebraic extension of the rationals with [[Discriminant|discriminant]] ''n''. The notation is ambiguous, as there are in general many extensions with the same discriminant. See [[Quadratic field|quadratic field]] and [[Cyclotomic field|cyclotomic field]] for classical examples.
'''[[Ideal class group|''h''(''n'')]]''', the class number function, is the order of the [[Ideal class group|ideal class group]] of an algebraic extension of the rationals with [[Discriminant|discriminant]] ''n''. The notation is ambiguous, as there are in general many extensions with the same discriminant. See [[Quadratic field|quadratic field]] and [[Cyclotomic field|cyclotomic field]] for classical examples.


===''r''<sub>''k''</sub>(''n'') – Sum of ''k'' squares===
=== ''r''<sub>''k''</sub>(''n'') – sum of ''k'' squares ===
'''[[Sum of squares function|''r''<sub>''k''</sub>(''n'')]]''' is the number of ways ''n'' can be represented as the sum of ''k'' squares, where representations that differ only in the order of the summands or in the signs of the square roots are counted as different.
'''[[Sum of squares function|''r''<sub>''k''</sub>(''n'')]]''' is the number of ways ''n'' can be represented as the sum of ''k'' squares, where representations that differ only in the order of the summands or in the signs of the square roots are counted as different.
<math display="block">r_k(n) = \left|\left\{(a_1, a_2,\dots,a_k):n=a_1^2+a_2^2+\cdots+a_k^2\right\}\right|</math>
<math display="block">r_k(n) = \left|\left\{(a_1, a_2,\dots,a_k):n=a_1^2+a_2^2+\cdots+a_k^2\right\}\right|</math>


===''D''(''n'') – Arithmetic derivative===
=== ''D''(''n'') – Arithmetic derivative ===
Using the [[Differential operator#Notations|Heaviside notation]] for the derivative, the [[Arithmetic derivative|arithmetic derivative]] ''D''(''n'') is a function such that  
Using the [[Differential operator#Notations|Heaviside notation]] for the derivative, the [[Arithmetic derivative|arithmetic derivative]] ''D''(''n'') is a function such that  
* <math> D(n) = 1</math> if ''n'' prime, and
* <math> D(n) = 1</math> if ''n'' prime, and
* <math>D(mn) = m D(n) + D(m) n</math> (the [[Product rule|product rule]])
* <math>D(mn) = m D(n) + D(m) n</math> (the [[Product rule|product rule]])


==Summation functions==
== Summation functions ==
Given an arithmetic function ''a''(''n''), its '''summation function''' ''A''(''x'') is defined by
Given an arithmetic function ''a''(''n''), its '''summation function''' ''A''(''x'') is defined by
<math display="block"> A(x) := \sum_{n \le x} a(n) .</math>
<math display="block"> A(x) := \sum_{n \le x} a(n) .</math>
Line 211: Line 207:
<math display="block"> \sum_{n \le x} f(n) \sim \sum_{n \le x} g(n) </math>
<math display="block"> \sum_{n \le x} f(n) \sim \sum_{n \le x} g(n) </math>


as ''x'' tends to infinity.  The example above shows that ''d''(''n'') has the average order log(''n'').<ref>{{cite book | title=Introduction to Analytic and Probabilistic Number Theory | author=Gérald Tenenbaum | series=Cambridge studies in advanced mathematics | volume=46 | publisher={{wipe|Cambridge University Press}} | pages=36–55 | year=1995 | isbn=0-521-41261-7 }}</ref>
as ''x'' tends to infinity.  The example above shows that ''d''(''n'') has the average order log(''n'').<ref>{{cite book | title=Introduction to Analytic and Probabilistic Number Theory | author=Gérald Tenenbaum | series=Cambridge studies in advanced mathematics | volume=46 | publisher=Cambridge University Press | pages=36–55 | year=1995 | isbn=0-521-41261-7 }}</ref>


==Dirichlet convolution==
== Dirichlet convolution ==
Given an arithmetic function ''a''(''n''), let ''F''<sub>''a''</sub>(''s''), for complex ''s'', be the function defined by the corresponding [[Dirichlet series]] (where it [[Convergent series|converges]]):<ref>Hardy & Wright, § 17.6, show how the theory of generating functions can be constructed in a purely formal manner with no attention paid to convergence.</ref>
Given an arithmetic function ''a''(''n''), let ''F''<sub>''a''</sub>(''s''), for complex ''s'', be the function defined by the corresponding [[Dirichlet series]] (where it [[Convergent series|converges]]):<ref>Hardy & Wright, § 17.6, show how the theory of generating functions can be constructed in a purely formal manner with no attention paid to convergence.</ref>
<math display="block"> F_a(s) := \sum_{n=1}^\infty \frac{a(n)}{n^s} .</math>
<math display="block"> F_a(s) := \sum_{n=1}^\infty \frac{a(n)}{n^s} .</math>
Line 233: Line 229:
<math display="block">g(n) = \sum_{d \mid n}f(d).</math>
<math display="block">g(n) = \sum_{d \mid n}f(d).</math>


Multiplying by the inverse of the zeta function gives the Möbius inversion formula:
Multiplying by the inverse of the zeta function gives the [[Möbius inversion]] formula:
<math display="block">f(n) = \sum_{d\mid n}\mu\left(\frac{n}{d}\right)g(d).</math>
<math display="block">f(n) = \sum_{d\mid n}\mu\left(\frac{n}{d}\right)g(d).</math>


If ''f'' is multiplicative, then so is ''g''. If ''f'' is completely multiplicative, then ''g'' is multiplicative, but may or may not be completely multiplicative.
If ''f'' is multiplicative, then so is ''g''. If ''f'' is completely multiplicative, then ''g'' is multiplicative, but may or may not be completely multiplicative.


==Relations among the functions==
== Relations among the functions ==
There are a great many formulas connecting arithmetical functions with each other and with the functions of analysis, especially powers, roots, and the exponential and log functions. The page [[Divisor sum identities|divisor sum identities]] contains many more generalized and related examples of identities involving arithmetic functions.
There are a great many formulas connecting arithmetical functions with each other and with the functions of analysis, especially powers, roots, and the exponential and log functions. The page [[Divisor sum identities|divisor sum identities]] contains many more generalized and related examples of identities involving arithmetic functions.


Here are a few examples:
Here are a few examples:


===Dirichlet convolutions===
=== Dirichlet convolutions ===
:<math>
: <math>
\sum_{\delta\mid n}\mu(\delta)=
\sum_{\delta\mid n}\mu(\delta)=
\sum_{\delta\mid n}\lambda\left(\frac{n}{\delta}\right)|\mu(\delta)|=
\sum_{\delta\mid n}\lambda\left(\frac{n}{\delta}\right)|\mu(\delta)|=
Line 252: Line 248:
\end{cases}
\end{cases}
</math> &nbsp; &nbsp; where ''λ'' is the Liouville function.<ref>Hardy & Wright, Thm. 263</ref>
</math> &nbsp; &nbsp; where ''λ'' is the Liouville function.<ref>Hardy & Wright, Thm. 263</ref>
 
: <math>\sum_{\delta\mid n}\varphi(\delta) = n.</math> &nbsp; &nbsp; &nbsp;<ref>Hardy & Wright, Thm. 63</ref>
:<math>\sum_{\delta\mid n}\varphi(\delta) = n.</math> &nbsp; &nbsp; &nbsp;<ref>Hardy & Wright, Thm. 63</ref>
:: <math>\varphi(n)
::<math>\varphi(n)
=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)\delta
=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)\delta
=n\sum_{\delta\mid n}\frac{\mu(\delta)}{\delta}.
=n\sum_{\delta\mid n}\frac{\mu(\delta)}{\delta}.
</math> &nbsp; &nbsp; &nbsp;  Möbius inversion
</math> &nbsp; &nbsp; &nbsp;  Möbius inversion
:<math>\sum_{d \mid n } J_k(d) = n^k.</math> &nbsp; &nbsp; &nbsp;<ref>see references at [[Jordan's totient function]]</ref>
: <math>\sum_{d \mid n } J_k(d) = n^k.</math> &nbsp; &nbsp; &nbsp;<ref>see references at [[Jordan's totient function]]</ref>
::<math>
:: <math>
J_k(n)
J_k(n)
=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)\delta^k
=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)\delta^k
=n^k\sum_{\delta\mid n}\frac{\mu(\delta)}{\delta^k}.
=n^k\sum_{\delta\mid n}\frac{\mu(\delta)}{\delta^k}.
</math> &nbsp; &nbsp; &nbsp;  Möbius inversion
</math> &nbsp; &nbsp; &nbsp;  Möbius inversion
:<math>\sum_{\delta\mid n}\delta^sJ_r(\delta)J_s\left(\frac{n}{\delta}\right) = J_{r+s}(n)</math> &nbsp; &nbsp; &nbsp;<ref>Holden et al. in external links The formula is Gegenbauer's</ref>
: <math>\sum_{\delta\mid n}\delta^sJ_r(\delta)J_s\left(\frac{n}{\delta}\right) = J_{r+s}(n)</math> &nbsp; &nbsp; &nbsp;<ref>Holden et al. in external links The formula is Gegenbauer's</ref>
:<math>\sum_{\delta\mid n}\varphi(\delta)d\left(\frac{n}{\delta}\right) = \sigma(n).</math> &nbsp; &nbsp; &nbsp;<ref>Hardy & Wright, Thm. 288–290</ref><ref>Dineva in external links, prop. 4</ref>
: <math>\sum_{\delta\mid n}\varphi(\delta)d\left(\frac{n}{\delta}\right) = \sigma(n).</math> &nbsp; &nbsp; &nbsp;<ref>Hardy & Wright, Thm. 288–290</ref><ref>Dineva in external links, prop. 4</ref>
:<math>\sum_{\delta\mid n}|\mu(\delta)| = 2^{\omega(n)}.</math> &nbsp; &nbsp; &nbsp;<ref>Hardy & Wright, Thm. 264</ref>
: <math>\sum_{\delta\mid n}|\mu(\delta)| = 2^{\omega(n)}.</math> &nbsp; &nbsp; &nbsp;<ref>Hardy & Wright, Thm. 264</ref>
::<math>|\mu(n)|=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)2^{\omega(\delta)}.</math> &nbsp; &nbsp; &nbsp;  Möbius inversion
:: <math>|\mu(n)|=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)2^{\omega(\delta)}.</math> &nbsp; &nbsp; &nbsp;  Möbius inversion
:<math>\sum_{\delta\mid n}2^{\omega(\delta)}=d(n^2).</math> &nbsp; &nbsp; &nbsp;
: <math>\sum_{\delta\mid n}2^{\omega(\delta)}=d(n^2).</math> &nbsp; &nbsp; &nbsp;
::<math>2^{\omega(n)}=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)d(\delta^2).</math> &nbsp; &nbsp; &nbsp;  Möbius inversion
:: <math>2^{\omega(n)}=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)d(\delta^2).</math> &nbsp; &nbsp; &nbsp;  Möbius inversion
:<math>\sum_{\delta\mid n}d(\delta^2)=d^2(n).</math> &nbsp; &nbsp; &nbsp;
: <math>\sum_{\delta\mid n}d(\delta^2)=d^2(n).</math> &nbsp; &nbsp; &nbsp;
::<math>d(n^2)=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)d^2(\delta).</math> &nbsp; &nbsp; &nbsp;  Möbius inversion
:: <math>d(n^2)=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)d^2(\delta).</math> &nbsp; &nbsp; &nbsp;  Möbius inversion
:<math>\sum_{\delta\mid n}d\left(\frac{n}{\delta}\right)2^{\omega(\delta)}=d^2(n).</math> &nbsp; &nbsp; &nbsp;
: <math>\sum_{\delta\mid n}d\left(\frac{n}{\delta}\right)2^{\omega(\delta)}=d^2(n).</math> &nbsp; &nbsp; &nbsp;
:<math>\sum_{\delta\mid n}\lambda(\delta)=\begin{cases}
: <math>\sum_{\delta\mid n}\lambda(\delta)=\begin{cases}
&1\text{ if } n \text{ is a square }\\
&1\text{ if } n \text{ is a square }\\
&0\text{ if } n \text{ is not  square.}
&0\text{ if } n \text{ is not  square.}
\end{cases}</math>  &nbsp; &nbsp;  where λ is the Liouville function.
\end{cases}</math>  &nbsp; &nbsp;  where λ is the Liouville function.
:<math>\sum_{\delta\mid n}\Lambda(\delta) = \log n.</math> &nbsp; &nbsp; &nbsp;<ref>Hardy & Wright, Thm. 296</ref>
: <math>\sum_{\delta\mid n}\Lambda(\delta) = \log n.</math> &nbsp; &nbsp; &nbsp;<ref>Hardy & Wright, Thm. 296</ref>
::<math>\Lambda(n)=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)\log(\delta).</math> &nbsp; &nbsp; &nbsp;  Möbius inversion
:: <math>\Lambda(n)=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)\log(\delta).</math> &nbsp; &nbsp; &nbsp;  Möbius inversion


===Sums of squares===
=== Sums of squares ===
For all <math>k \ge 4,\;\;\; r_k(n) > 0.</math> &nbsp; &nbsp; ([[Lagrange's four-square theorem]]).
For all <math>k \ge 4,\;\;\; r_k(n) > 0.</math> &nbsp; &nbsp; ([[Lagrange's four-square theorem]]).
 
: <math>
:<math>
r_2(n) = 4\sum_{d\mid n}\left(\frac{-4}{d}\right),
r_2(n) = 4\sum_{d\mid n}\left(\frac{-4}{d}\right),
</math> <ref>Hardy & Wright, Thm. 278</ref>
</math> <ref>Hardy & Wright, Thm. 278</ref>
where the [[Kronecker symbol]] has the values
where the [[Kronecker symbol]] has the values
:<math>
: <math>
\left(\frac{-4}{n}\right) =  
\left(\frac{-4}{n}\right) =  
\begin{cases}
\begin{cases}
Line 296: Line 290:
</math>
</math>


There is a formula for r<sub>3</sub> in the section on class numbers below.
There is a formula for ''r''<sub>3</sub> in the section on class numbers below.
<math display="block">
<math display="block">
r_4(n) =
r_4(n) =
Line 307: Line 301:
</math>
</math>
where {{math|1=''ν'' = ''ν''<sub>2</sub>(''n'')}}. &nbsp; &nbsp;<ref>Hardy & Wright, Thm. 386</ref><ref>Hardy, ''Ramanujan'', eqs 9.1.2, 9.1.3</ref><ref>Koblitz, Ex. III.5.2</ref>
where {{math|1=''ν'' = ''ν''<sub>2</sub>(''n'')}}. &nbsp; &nbsp;<ref>Hardy & Wright, Thm. 386</ref><ref>Hardy, ''Ramanujan'', eqs 9.1.2, 9.1.3</ref><ref>Koblitz, Ex. III.5.2</ref>
<math display="block">r_6(n) = 16 \sum_{d\mid n} \chi\left(\frac{n}{d}\right)d^2 - 4\sum_{d\mid n} \chi(d)d^2,</math>
<math display="block">r_6(n) = 16 \sum_{d\mid n} \chi\left(\frac{n}{d}\right)d^2 - 4\sum_{d\mid n} \chi(d)d^2,</math>
where <math> \chi(n) = \left(\frac{-4}{n}\right).</math><ref name="Hardy & Wright, § 20.13">Hardy & Wright, § 20.13</ref>
where <math> \chi(n) = \left(\frac{-4}{n}\right).</math><ref name="Hardy & Wright, § 20.13">Hardy & Wright, § 20.13</ref>
Line 320: Line 313:


That is, if ''n'' is odd, {{math|1=''σ''<sub>''k''</sub><sup>*</sup>(''n'')}} is  the sum of the ''k''th powers of the divisors of ''n'', that is, {{math|1=''σ''<sub>''k''</sub>(''n''),}} and if ''n'' is even it is the sum of the ''k''th  powers of the even divisors of ''n'' minus the sum of the ''k''th  powers of the odd divisors of ''n''.
That is, if ''n'' is odd, {{math|1=''σ''<sub>''k''</sub><sup>*</sup>(''n'')}} is  the sum of the ''k''th powers of the divisors of ''n'', that is, {{math|1=''σ''<sub>''k''</sub>(''n''),}} and if ''n'' is even it is the sum of the ''k''th  powers of the even divisors of ''n'' minus the sum of the ''k''th  powers of the odd divisors of ''n''.
 
: <math>r_8(n) = 16\sigma_3^*(n).</math> &nbsp; &nbsp;<ref name="Hardy & Wright, § 20.13" /><ref>Hardy, ''Ramanujan'', § 9.13</ref>
:<math>r_8(n) = 16\sigma_3^*(n).</math> &nbsp; &nbsp;<ref name="Hardy & Wright, § 20.13" /><ref>Hardy, ''Ramanujan'', § 9.13</ref>


Adopt the convention that Ramanujan's {{math|1=''τ''(''x'') = 0}} if ''x'' is '''not an integer.'''
Adopt the convention that Ramanujan's {{math|1=''τ''(''x'') = 0}} if ''x'' is '''not an integer.'''
 
: <math>
:<math>
r_{24}(n) = \frac{16}{691}\sigma_{11}^*(n) + \frac{128}{691}\left\{
r_{24}(n) = \frac{16}{691}\sigma_{11}^*(n) + \frac{128}{691}\left\{
(-1)^{n-1}259\tau(n)-512\tau\left(\frac{n}{2}\right)\right\}
(-1)^{n-1}259\tau(n)-512\tau\left(\frac{n}{2}\right)\right\}
</math> &nbsp; &nbsp;<ref>Hardy, ''Ramanujan'', § 9.17</ref>
</math> &nbsp; &nbsp;<ref>Hardy, ''Ramanujan'', § 9.17</ref>


===Divisor sum convolutions===
=== Divisor sum convolutions ===
Here "convolution" does not mean "Dirichlet convolution" but instead refers to the formula for the coefficients of the [[Power series#Multiplication and division|product of two power series]]:
Here "convolution" does not mean "Dirichlet convolution" but instead refers to the formula for the coefficients of the [[Power series#Multiplication and division|product of two power series]]:
 
: <math>  \left(\sum_{n=0}^\infty a_n x^n\right)\left(\sum_{n=0}^\infty b_n x^n\right)
:<math>  \left(\sum_{n=0}^\infty a_n x^n\right)\left(\sum_{n=0}^\infty b_n x^n\right)
= \sum_{i=0}^\infty \sum_{j=0}^\infty  a_i b_j x^{i+j}
= \sum_{i=0}^\infty \sum_{j=0}^\infty  a_i b_j x^{i+j}
= \sum_{n=0}^\infty \left(\sum_{i=0}^n a_i b_{n-i}\right) x^n
= \sum_{n=0}^\infty \left(\sum_{i=0}^n a_i b_{n-i}\right) x^n
Line 340: Line 330:


The sequence <math>c_n = \sum_{i=0}^n a_i b_{n-i}</math> is called the [[Convolution|convolution]] or the [[Cauchy product]] of the sequences ''a''<sub>''n''</sub> and ''b''<sub>''n''</sub>.
The sequence <math>c_n = \sum_{i=0}^n a_i b_{n-i}</math> is called the [[Convolution|convolution]] or the [[Cauchy product]] of the sequences ''a''<sub>''n''</sub> and ''b''<sub>''n''</sub>.
<br>These formulas may be proved analytically (see [[Eisenstein series]]) or by elementary methods.<ref>Williams, ch. 13; Huard, et al. (external links).</ref>
{{br}}These formulas may be proved analytically (see [[Eisenstein series]]) or by elementary methods.<ref>Williams, ch. 13; Huard, et al. (external links).</ref>
 
: <math>
:<math>
\sigma_3(n) = \frac{1}{5}\left\{6n\sigma_1(n)-\sigma_1(n) + 12\sum_{0<k<n}\sigma_1(k)\sigma_1(n-k)\right\}.
\sigma_3(n) = \frac{1}{5}\left\{6n\sigma_1(n)-\sigma_1(n) + 12\sum_{0<k<n}\sigma_1(k)\sigma_1(n-k)\right\}.
</math> &nbsp; &nbsp;<ref name="Ramanujan, p. 146">Ramanujan, ''On Certain Arithmetical Functions'', Table IV; ''Papers'', p. 146</ref>
</math> &nbsp; &nbsp;<ref name="Ramanujan, p. 146">Ramanujan, ''On Certain Arithmetical Functions'', Table IV; ''Papers'', p. 146</ref>
 
: <math>
:<math>
\sigma_5(n) = \frac{1}{21}\left\{10(3n-1)\sigma_3(n)+\sigma_1(n) + 240\sum_{0<k<n}\sigma_1(k)\sigma_3(n-k)\right\}.
\sigma_5(n) = \frac{1}{21}\left\{10(3n-1)\sigma_3(n)+\sigma_1(n) + 240\sum_{0<k<n}\sigma_1(k)\sigma_3(n-k)\right\}.
</math> &nbsp; &nbsp;<ref name="Koblitz, ex. III.2.8">Koblitz, ex. III.2.8</ref>
</math> &nbsp; &nbsp;<ref name="Koblitz, ex. III.2.8">Koblitz, ex. III.2.8</ref>
 
: <math>
:<math>
\begin{align}
\begin{align}
\sigma_7(n)
\sigma_7(n)
Line 357: Line 344:
\end{align}
\end{align}
</math> &nbsp; &nbsp;<ref name="Koblitz, ex. III.2.8" /><ref>Koblitz, ex. III.2.3</ref>
</math> &nbsp; &nbsp;<ref name="Koblitz, ex. III.2.8" /><ref>Koblitz, ex. III.2.3</ref>
 
: <math>
:<math>
\begin{align}
\begin{align}
\sigma_9(n)
\sigma_9(n)
Line 365: Line 351:
\end{align}
\end{align}
</math> &nbsp; &nbsp;<ref name="Ramanujan, p. 146" /><ref>Koblitz, ex. III.2.2</ref>
</math> &nbsp; &nbsp;<ref name="Ramanujan, p. 146" /><ref>Koblitz, ex. III.2.2</ref>
 
: <math>
:<math>
\tau(n) = \frac{65}{756}\sigma_{11}(n) + \frac{691}{756}\sigma_{5}(n) - \frac{691}{3}\sum_{0<k<n}\sigma_5(k)\sigma_5(n-k),
\tau(n) = \frac{65}{756}\sigma_{11}(n) + \frac{691}{756}\sigma_{5}(n) - \frac{691}{3}\sum_{0<k<n}\sigma_5(k)\sigma_5(n-k),
</math> &nbsp; &nbsp; where ''τ''(''n'') is Ramanujan's function. &nbsp; &nbsp;<ref>Koblitz, ex. III.2.4</ref><ref>Apostol, ''Modular Functions ...'', Ex. 6.10</ref>
</math> &nbsp; &nbsp; where ''τ''(''n'') is Ramanujan's function. &nbsp; &nbsp;<ref>Koblitz, ex. III.2.4</ref><ref>Apostol, ''Modular Functions ...'', Ex. 6.10</ref>
Line 373: Line 358:


Extend the domain of the partition function by setting {{math|1=''p''(0) = 1.}}
Extend the domain of the partition function by setting {{math|1=''p''(0) = 1.}}
 
: <math>
:<math>
p(n)=\frac{1}{n}\sum_{1\le k\le n}\sigma(k)p(n-k).
p(n)=\frac{1}{n}\sum_{1\le k\le n}\sigma(k)p(n-k).
</math> &nbsp; &nbsp;<ref>G.H. Hardy, S. Ramannujan, ''Asymptotic Formulæ in Combinatory Analysis'', § 1.3; in Ramannujan, ''Papers'' p. 279</ref> &nbsp; This recurrence can be used to compute ''p''(''n'').
</math> &nbsp; &nbsp;<ref>G.H. Hardy, S. Ramannujan, ''Asymptotic Formulæ in Combinatory Analysis'', § 1.3; in Ramannujan, ''Papers'' p. 279</ref> &nbsp; This recurrence can be used to compute ''p''(''n'').


===Class number related===
=== Class number related ===
[[Biography:Peter Gustav Lejeune Dirichlet|Peter Gustav Lejeune Dirichlet]] discovered formulas that relate the class number ''h'' of quadratic number fields to the Jacobi symbol.<ref>Landau, p. 168, credits Gauss as well as Dirichlet</ref>
[[Biography:Peter Gustav Lejeune Dirichlet|Peter Gustav Lejeune Dirichlet]] discovered formulas that relate the class number ''h'' of quadratic number fields to the Jacobi symbol.<ref>Landau, p. 168, credits Gauss as well as Dirichlet</ref>


An integer ''D'' is called a '''fundamental discriminant''' if it is the [[Discriminant|discriminant]] of a quadratic number field. This is equivalent to ''D'' ≠ 1 and either a) ''D'' is squarefree and ''D'' ≡ 1 (mod 4) or b) ''D'' ≡ 0 (mod 4), ''D''/4 is squarefree, and ''D''/4 ≡ 2 or 3 (mod 4).<ref>Cohen, Def. 5.1.2</ref>
An integer ''D'' is called a '''fundamental discriminant''' if it is the [[Discriminant|discriminant]] of a quadratic number field. This is equivalent to ''D'' ≠ 1 and either a) ''D'' is squarefree and ''D'' ≡ 1 (mod 4) or b) ''D'' ≡ 0 (mod 4), ''D''/4 is squarefree, and ''D''/4 ≡ 2 or 3 (mod 4).<ref>Cohen, Def. 5.1.2</ref>


Extend the Jacobi symbol to accept even numbers in the "denominator" by defining the [[Kronecker symbol]]:
Extend the Jacobi symbol to accept even numbers in the "denominator" by defining the [[Kronecker symbol]]:
Line 398: Line 382:
<math display="block">r_3(|D|) = 12\left(1-\left(\frac{D}{2}\right)\right)h(D).</math>
<math display="block">r_3(|D|) = 12\left(1-\left(\frac{D}{2}\right)\right)h(D).</math>


===Prime-count related===
=== Prime-count related ===
Let <math>H_n = 1 + \frac 1 2 + \frac 1 3 + \cdots +\frac{1}{n}</math> &nbsp; be the ''n''th [[Harmonic number|harmonic number]]. Then
Let <math>H_n = 1 + \frac 1 2 + \frac 1 3 + \cdots +\frac{1}{n}</math> &nbsp; be the ''n''th [[Harmonic number|harmonic number]]. Then
 
: <math> \sigma(n) \le H_n + e^{H_n}\log H_n</math> &nbsp; is true for every natural number ''n'' if and only if the [[Riemann hypothesis]] is true. &nbsp; &nbsp;<ref>See [[Divisor function#Growth rate|Divisor function]].</ref>
:<math> \sigma(n) \le H_n + e^{H_n}\log H_n</math> &nbsp; is true for every natural number ''n'' if and only if the [[Riemann hypothesis]] is true. &nbsp; &nbsp;<ref>See [[Divisor function#Growth rate|Divisor function]].</ref>


The Riemann hypothesis is also equivalent to the statement that, for all ''n'' > 5040,
The Riemann hypothesis is also equivalent to the statement that, for all ''n'' > 5040,
<math display="block">\sigma(n) < e^\gamma n \log \log n </math> (where γ is the [[Euler–Mascheroni constant]]). This is [[Divisor function#Growth rate|Robin's theorem]].
<math display="block">\sigma(n) < e^\gamma n \log \log n </math> (where γ is the [[Euler–Mascheroni constant]]). This is [[Divisor function#Growth rate|Robin's theorem]].
: <math>\sum_{p}\nu_p(n) = \Omega(n).</math>
: <math>\psi(x)=\sum_{n\le x}\Lambda(n).</math> &nbsp; &nbsp;<ref>Hardy & Wright, eq. 22.1.2</ref>
: <math>\Pi(x)= \sum_{n\le x}\frac{\Lambda(n)}{\log n}.</math> &nbsp; &nbsp;<ref>See [[Prime-counting function#Other prime-counting functions|prime-counting functions]].</ref>
: <math>e^{\theta(x)}=\prod_{p\le x}p.</math> &nbsp; &nbsp;<ref>Hardy & Wright, eq. 22.1.1</ref>
: <math>e^{\psi(x)}= \operatorname{lcm}[1,2,\dots,\lfloor x\rfloor].</math> &nbsp; &nbsp;<ref>Hardy & Wright, eq. 22.1.3</ref>


:<math>\sum_{p}\nu_p(n) = \Omega(n).</math>
=== Menon's identity ===
:<math>\psi(x)=\sum_{n\le x}\Lambda(n).</math> &nbsp; &nbsp;<ref>Hardy & Wright, eq. 22.1.2</ref>
:<math>\Pi(x)= \sum_{n\le x}\frac{\Lambda(n)}{\log n}.</math> &nbsp; &nbsp;<ref>See [[Prime-counting function#Other prime-counting functions|prime-counting functions]].</ref>
:<math>e^{\theta(x)}=\prod_{p\le x}p.</math> &nbsp; &nbsp;<ref>Hardy & Wright, eq. 22.1.1</ref>
:<math>e^{\psi(x)}= \operatorname{lcm}[1,2,\dots,\lfloor x\rfloor].</math> &nbsp; &nbsp;<ref>Hardy & Wright, eq. 22.1.3</ref>
 
===Menon's identity===
In 1965 P Kesava Menon proved<ref>László Tóth, ''Menon's Identity and Arithmetical Sums ...'', eq. 1</ref>
In 1965 P Kesava Menon proved<ref>László Tóth, ''Menon's Identity and Arithmetical Sums ...'', eq. 1</ref>
<math display="block">\sum_{\stackrel{1\le k\le n}{ \gcd(k,n)=1}} \gcd(k-1,n)=\varphi(n)d(n).</math>
<math display="block">\sum_{\stackrel{1\le k\le n}{ \gcd(k,n)=1}} \gcd(k-1,n)=\varphi(n)d(n).</math>
Line 423: Line 405:
\sum_{\stackrel{1\le k_1, k_2, \dots, k_s\le n}{ \gcd(k_1,k_2,\dots,k_s,n)=1}} \gcd(k_1-a_1,k_2-a_2,\dots,k_s-a_s,n)^s
\sum_{\stackrel{1\le k_1, k_2, \dots, k_s\le n}{ \gcd(k_1,k_2,\dots,k_s,n)=1}} \gcd(k_1-a_1,k_2-a_2,\dots,k_s-a_s,n)^s
=J_s(n)d(n), </math> where ''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a''<sub>''s''</sub> are integers, gcd(''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a''<sub>''s''</sub>, ''n'') = 1.
=J_s(n)d(n), </math> where ''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a''<sub>''s''</sub> are integers, gcd(''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a''<sub>''s''</sub>, ''n'') = 1.
*[[Biography:László Fejes Tóth|László Fejes Tóth]]<ref>Tóth, eq. 35</ref> <math display="block">
* [[Biography:László Fejes Tóth|László Fejes Tóth]]<ref>Tóth, eq. 35</ref> <math display="block">
\sum_{\stackrel{1\le k\le m}{ \gcd(k,m)=1}} \gcd(k^2-1,m_1)\gcd(k^2-1,m_2)
\sum_{\stackrel{1\le k\le m}{ \gcd(k,m)=1}} \gcd(k^2-1,m_1)\gcd(k^2-1,m_2)
=\varphi(n)\sum_{\stackrel{d_1\mid m_1} {d_2\mid m_2}} \varphi(\gcd(d_1, d_2))2^{\omega(\operatorname{lcm}(d_1, d_2))},
=\varphi(n)\sum_{\stackrel{d_1\mid m_1} {d_2\mid m_2}} \varphi(\gcd(d_1, d_2))2^{\omega(\operatorname{lcm}(d_1, d_2))},
Line 433: Line 415:
where <math>*</math> stands for Dirichlet convolution.
where <math>*</math> stands for Dirichlet convolution.


===Miscellaneous===
=== Miscellaneous ===
Let ''m'' and ''n'' be distinct, odd, and positive. Then the Jacobi symbol satisfies the law of [[Quadratic reciprocity|quadratic reciprocity]]:
Let ''m'' and ''n'' be distinct, odd, and positive. Then the Jacobi symbol satisfies the law of [[Quadratic reciprocity|quadratic reciprocity]]:
<math display="block"> \left(\frac{m}{n}\right) \left(\frac{n}{m}\right) = (-1)^{(m-1)(n-1)/4}.</math>
<math display="block"> \left(\frac{m}{n}\right) \left(\frac{n}{m}\right) = (-1)^{(m-1)(n-1)/4}.</math>


Let ''D''(''n'') be the arithmetic derivative. Then the logarithmic derivative <math display="block">\frac{D(n)}{n} = \sum_{\stackrel{p\mid n}{p\text{ prime}}} \frac {v_{p}(n)} {p}.</math> See [[Arithmetic derivative]] for details.
Let ''D''(''n'') be the arithmetic derivative. Then the logarithmic derivative <math display="block">\frac{D(n)}{n} = \sum_{\stackrel{p\mid n}{p\text{ prime}}} \frac {v_{p}(n)} {p}.</math> See ''[[Arithmetic derivative]]'' for details.


Let ''λ''(''n'') be Liouville's function. Then
Let ''λ''(''n'') be Liouville's function. Then
 
: <math>|\lambda(n)|\mu(n) =\lambda(n)|\mu(n)| = \mu(n),</math> &nbsp; &nbsp; and
:<math>|\lambda(n)|\mu(n) =\lambda(n)|\mu(n)| = \mu(n),</math> &nbsp; &nbsp; and
: <math>\lambda(n)\mu(n) = |\mu(n)| =\mu^2(n).</math> &nbsp; &nbsp;
:<math>\lambda(n)\mu(n) = |\mu(n)| =\mu^2(n).</math> &nbsp; &nbsp;


Let ''λ''(''n'') be Carmichael's function. Then
Let ''λ''(''n'') be Carmichael's function. Then
 
: <math>\lambda(n)\mid \phi(n).</math>  &nbsp; &nbsp;  Further,
:<math>\lambda(n)\mid \phi(n).</math>  &nbsp; &nbsp;  Further,
: <math>\lambda(n)= \phi(n) \text{ if and only if }n=\begin{cases}
 
:<math>\lambda(n)= \phi(n) \text{ if and only if }n=\begin{cases}
1,2, 4;\\
1,2, 4;\\
3,5,7,9,11, \ldots \text{ (that is, } p^k \text{, where }p\text{ is an odd prime)};\\
3,5,7,9,11, \ldots \text{ (that is, } p^k \text{, where }p\text{ is an odd prime)};\\
Line 455: Line 434:
See [[Multiplicative group of integers modulo n]] and [[Primitive root modulo n]].
See [[Multiplicative group of integers modulo n]] and [[Primitive root modulo n]].
&nbsp;
&nbsp;
:<math>2^{\omega(n)} \le d(n) \le 2^{\Omega(n)}.</math> &nbsp; &nbsp;<ref>Hardy ''Ramanujan'', eq. 3.10.3</ref><ref>Hardy & Wright, § 22.13</ref>
: <math>2^{\omega(n)} \le d(n) \le 2^{\Omega(n)}.</math> &nbsp; &nbsp;<ref>Hardy ''Ramanujan'', eq. 3.10.3</ref><ref>Hardy & Wright, § 22.13</ref>
 
: <math>\frac{6}{\pi^2}<\frac{\phi(n)\sigma(n)}{n^2} < 1.</math> &nbsp; &nbsp;<ref>Hardy & Wright, Thm. 329</ref>
:<math>\frac{6}{\pi^2}<\frac{\phi(n)\sigma(n)}{n^2} < 1.</math> &nbsp; &nbsp;<ref>Hardy & Wright, Thm. 329</ref>
: <math>\begin{align}
 
:<math>\begin{align}
c_q(n)
c_q(n)
&=\frac{\mu\left(\frac{q}{\gcd(q, n)}\right)}{\phi\left(\frac{q}{\gcd(q, n)}\right)}\phi(q)\\
&=\frac{\mu\left(\frac{q}{\gcd(q, n)}\right)}{\phi\left(\frac{q}{\gcd(q, n)}\right)}\phi(q)\\
&=\sum_{\delta\mid \gcd(q,n)}\mu\left(\frac{q}{\delta}\right)\delta.
&=\sum_{\delta\mid \gcd(q,n)}\mu\left(\frac{q}{\delta}\right)\delta.
\end{align}</math> &nbsp; &nbsp;<ref>Hardy & Wright, Thms. 271, 272</ref> &nbsp; &nbsp; Note that &nbsp;<math>\phi(q) = \sum_{\delta\mid q}\mu\left(\frac{q}{\delta}\right)\delta.</math> &nbsp; &nbsp;<ref>Hardy & Wright, eq. 16.3.1</ref>
\end{align}</math> &nbsp; &nbsp;<ref>Hardy & Wright, Thms. 271, 272</ref> &nbsp; &nbsp; Note that &nbsp;<math>\phi(q) = \sum_{\delta\mid q}\mu\left(\frac{q}{\delta}\right)\delta.</math> &nbsp; &nbsp;<ref>Hardy & Wright, eq. 16.3.1</ref>
 
: <math>c_q(1) = \mu(q).</math>
:<math>c_q(1) = \mu(q).</math>
: <math>c_q(q) = \phi(q).</math>
:<math>c_q(q) = \phi(q).</math>
: <math>\sum_{\delta\mid n}d^{3}(\delta) = \left(\sum_{\delta\mid n}d(\delta)\right)^2.</math> &nbsp; &nbsp;<ref>Ramanujan, ''Some Formulæ in the Analytic Theory of Numbers'', eq. (C); ''Papers'' p. 133. A footnote says that Hardy told Ramanujan it also appears in an 1857 paper by Liouville.</ref> &nbsp; Compare this with {{math|1=1<sup>3</sup> + 2<sup>3</sup> + 3<sup>3</sup> + ... + ''n''<sup>3</sup> = (1 + 2 + 3 + ... + ''n'')<sup>2</sup>}}
 
: <math>d(uv) = \sum_{\delta\mid \gcd(u,v)}\mu(\delta)d\left(\frac{u}{\delta}\right)d\left(\frac{v}{\delta}\right).
:<math>\sum_{\delta\mid n}d^{3}(\delta) = \left(\sum_{\delta\mid n}d(\delta)\right)^2.</math> &nbsp; &nbsp;<ref>Ramanujan, ''Some Formulæ in the Analytic Theory of Numbers'', eq. (C); ''Papers'' p. 133. A footnote says that Hardy told Ramanujan it also appears in an 1857 paper by Liouville.</ref> &nbsp; Compare this with {{math|1=1<sup>3</sup> + 2<sup>3</sup> + 3<sup>3</sup> + ... + ''n''<sup>3</sup> = (1 + 2 + 3 + ... + ''n'')<sup>2</sup>}}
 
:<math>d(uv) = \sum_{\delta\mid \gcd(u,v)}\mu(\delta)d\left(\frac{u}{\delta}\right)d\left(\frac{v}{\delta}\right).
</math> &nbsp; &nbsp;<ref>Ramanujan, ''Some Formulæ in the Analytic Theory of Numbers'', eq. (F); ''Papers'' p. 134</ref>
</math> &nbsp; &nbsp;<ref>Ramanujan, ''Some Formulæ in the Analytic Theory of Numbers'', eq. (F); ''Papers'' p. 134</ref>
 
: <math>\sigma_k(u)\sigma_k(v) = \sum_{\delta\mid \gcd(u,v)}\delta^k\sigma_k\left(\frac{uv}{\delta^2}\right).
:<math>\sigma_k(u)\sigma_k(v) = \sum_{\delta\mid \gcd(u,v)}\delta^k\sigma_k\left(\frac{uv}{\delta^2}\right).
</math>  &nbsp; &nbsp;<ref>Apostol, ''Modular Functions ...'', ch. 6 eq. 4</ref>
</math>  &nbsp; &nbsp;<ref>Apostol, ''Modular Functions ...'', ch. 6 eq. 4</ref>
 
: <math>\tau(u)\tau(v) = \sum_{\delta\mid \gcd(u,v)}\delta^{11}\tau\left(\frac{uv}{\delta^2}\right),
:<math>\tau(u)\tau(v) = \sum_{\delta\mid \gcd(u,v)}\delta^{11}\tau\left(\frac{uv}{\delta^2}\right),
</math>  &nbsp; &nbsp; where ''τ''(''n'') is Ramanujan's function.  &nbsp; &nbsp;<ref>Apostol, ''Modular Functions ...'', ch. 6 eq. 3</ref>
</math>  &nbsp; &nbsp; where ''τ''(''n'') is Ramanujan's function.  &nbsp; &nbsp;<ref>Apostol, ''Modular Functions ...'', ch. 6 eq. 3</ref>


== First 100 values of some arithmetic functions ==
== First 100 values of some arithmetic functions ==
{| class="wikitable"  style="text-align:right;"
{| class="wikitable"  style="text-align:right;"
! ''n''!!factorization !! {{phi}}(''n'') !! ''ω''(''n'') !! Ω(''n'') !! {{lambda}}(''n'') !! {{mu}}(''n'') !! {{lambda|uc=true}}(''n'') !! {{pi}}(''n'')!! {{sigma}}<sub>0</sub>(''n'')!! {{sigma}}<sub>1</sub>(''n'')!! {{sigma}}<sub>2</sub>(''n'')!! ''r''<sub>2</sub>(''n'')!! ''r''<sub>3</sub>(''n'')!! ''r''<sub>4</sub>(''n'')
! ''n''!!factorization !! ''φ''(''n'') !! ''ω''(''n'') !! Ω(''n'') !! ''λ''(''n'') !! ''μ''(''n'') !! Λ(''n'') !! ''π''(''n'')!! ''σ''<sub>0</sub>(''n'')!! ''σ''<sub>1</sub>(''n'')!! ''σ''<sub>2</sub>(''n'')!! ''r''<sub>2</sub>(''n'')!! ''r''<sub>3</sub>(''n'')!! ''r''<sub>4</sub>(''n'')
|-
|-
| 1||style='text-align:center;'| 1|| 1|| 0|| 0|| 1|| 1|| 0|| 0|| 1|| 1|| 1|| 4|| 6|| 8
| 1||style='text-align:center;'| 1|| 1|| 0|| 0|| 1|| 1|| 0|| 0|| 1|| 1|| 1|| 4|| 6|| 8
Line 683: Line 655:
| 100||style='text-align:center;'| 2<sup>2</sup> · 5<sup>2</sup>|| 40|| 2|| 4|| 1|| 0|| 0|| 25|| 9|| 217|| 13671|| 12|| 30|| 744
| 100||style='text-align:center;'| 2<sup>2</sup> · 5<sup>2</sup>|| 40|| 2|| 4|| 1|| 0|| 0|| 25|| 9|| 217|| 13671|| 12|| 30|| 744
|-
|-
! ''n''!!factorization !! {{phi}}(''n'') !! ''&omega;''(''n'') !! &Omega;(''n'') !! {{lambda}}(''n'') !! {{mu}}(''n'') !! {{lambda|uc=true}}(''n'') !! {{pi}}(''n'')!! {{sigma}}<sub>0</sub>(''n'')!! {{sigma}}<sub>1</sub>(''n'')!! {{sigma}}<sub>2</sub>(''n'')!! ''r''<sub>2</sub>(''n'')!! ''r''<sub>3</sub>(''n'')!! ''r''<sub>4</sub>(''n'')
! ''n''!!factorization !! ''φ''(''n'') !! ''ω''(''n'') !! Ω(''n'') !! {{lambda}}(''n'') !! {{mu}}(''n'') !! Λ(''n'') !! ''π''(''n'')!! ''σ''<sub>0</sub>(''n'')!! ''σ''<sub>1</sub>(''n'')!! ''σ''<sub>2</sub>(''n'')!! ''r''<sub>2</sub>(''n'')!! ''r''<sub>3</sub>(''n'')!! ''r''<sub>4</sub>(''n'')


|}
|}


==Notes==
== Notes ==
{{Reflist|30em}}
{{reflist|30em}}


== References ==
== References ==
* {{Citation
* {{citation
|title=Introduction to Analytic Number Theory
|title=Introduction to Analytic Number Theory
|author=Tom M. Apostol
|year=1976
|year=1976
|publisher=Springer [[Undergraduate Texts in Mathematics]]
|publisher=Springer [[Undergraduate Texts in Mathematics]]
|isbn=0-387-90163-9
|isbn=0-387-90163-9
|url-access=registration
|url-access=registration
|url=https://archive.org/details/introductiontoan00apos_0
|url=https://archive.org/details/introductiontoan00apos_0
}}
}}
* {{Citation |last      = Apostol
* {{citation
|first      = Tom M.
  |title      = Modular Functions and Dirichlet Series in Number Theory (2nd Edition)
  |title      = Modular Functions and Dirichlet Series in Number Theory (2nd Edition)
  |publisher  = Springer
  |publisher  = Springer
Line 716: Line 686:
   | location = Berlin
   | location = Berlin
   | year = 1993
   | year = 1993
   | isbn = 3-540-55640-0}}
   | isbn = 3-540-55640-0
}}
* {{cite book
* {{cite book
   | last = Edwards
   | last = Edwards
Line 724: Line 695:
   | location = New York
   | location = New York
   | year = 1977
   | year = 1977
   | isbn = 0-387-90230-9}}
   | isbn = 0-387-90230-9
* {{Citation
}}
* {{citation
   | last1 = Hardy  | first1 = G. H.
   | last1 = Hardy  | first1 = G. H.
   | title = Ramanujan: Twelve Lectures on Subjects Suggested by his Life and work
   | title = Ramanujan: Twelve Lectures on Subjects Suggested by his Life and work
Line 732: Line 704:
   | year = 1999
   | year = 1999
   | isbn = 978-0-8218-2023-0| hdl = 10115/1436
   | isbn = 978-0-8218-2023-0| hdl = 10115/1436
  }}
}}
* {{Hardy and Wright|edition=5th}}
* {{Hardy and Wright|edition=5th}}
* {{Citation
* {{citation
|title=The Prime Number Theorem
|title=The Prime Number Theorem
|first=G. J. O. | last=Jameson
|first=G. J. O. | last=Jameson
|year=2003
|year=2003
|publisher=Cambridge University Press
|publisher=Cambridge University Press
|isbn=0-521-89110-8}}
|isbn=0-521-89110-8
* {{Citation
}}
* {{citation
   | last1 = Koblitz | first1 = Neal
   | last1 = Koblitz | first1 = Neal
   | title = Introduction to Elliptic Curves and Modular Forms
   | title = Introduction to Elliptic Curves and Modular Forms
Line 746: Line 719:
   | location = New York
   | location = New York
   | year = 1984
   | year = 1984
   | isbn = 0-387-97966-2}}
   | isbn = 0-387-97966-2
}}
* {{citation
* {{citation
   | title = Elementary Number Theory
   | title = Elementary Number Theory
   | publisher = Chelsea
   | publisher = Chelsea
   | location = New York
   | location = New York
   | year = 1966}}
   | year = 1966
* {{Citation
}}
|title=Fundamentals of Number Theory
* {{citation
|author=William J. LeVeque
|title=Fundamentals of Number Theory
|year=1996
|year=1996
|publisher=Courier Dover Publications
|publisher=Courier Dover Publications
|isbn=0-486-68906-9}}
|isbn=0-486-68906-9
}}
* {{citation | first1 = Calvin T. | last1 = Long | year = 1972 | title = Elementary Introduction to Number Theory | edition = 2nd | publisher = [[Software:D. C. Heath and Company|D. C. Heath and Company]] | location = Lexington | lccn = 77-171950 }}
* {{citation | first1 = Calvin T. | last1 = Long | year = 1972 | title = Elementary Introduction to Number Theory | edition = 2nd | publisher = [[Software:D. C. Heath and Company|D. C. Heath and Company]] | location = Lexington | lccn = 77-171950 }}
* {{Citation
* {{citation
|title=Introduction to Mathematical Logic
|title=Introduction to Mathematical Logic
|author=Elliott Mendelson
|author=Elliott Mendelson
|year=1987
|year=1987
|publisher=CRC Press
|publisher=CRC Press
|isbn=0-412-80830-7}}
|isbn=0-412-80830-7}}
*{{citation
* {{citation
   | title = Introduction to number theory (2nd Edition)
   | title = Introduction to number theory (2nd Edition)
   | publisher = Chelsea
   | publisher = Chelsea
   | year = 1964
   | year = 1964
   | isbn = 978-0-8218-2833-5}}
   | isbn = 978-0-8218-2833-5
* {{citation | first1 = Ivan M. | last1 = Niven| first2 = Herbert S. | last2 = Zuckerman | year = 1972 | title = An introduction to the theory of numbers (3rd Edition) | publisher = {{wipe|John Wiley & Sons}} | isbn = 0-471-64154-5 }}
}}
* {{citation | first1 = Ivan M. | last1 = Niven| first2 = Herbert S. | last2 = Zuckerman | year = 1972 | title = An introduction to the theory of numbers (3rd Edition) | publisher = [[Company:John Wiley & Sons|John Wiley & Sons]] | isbn = 0-471-64154-5 }}
* {{citation | first1 = Anthony J. | last1 = Pettofrezzo | first2 = Donald R. | last2 = Byrkit | year = 1970 | title = Elements of Number Theory | publisher = Prentice Hall | location = Englewood Cliffs | lccn = 77-81766 }}
* {{citation | first1 = Anthony J. | last1 = Pettofrezzo | first2 = Donald R. | last2 = Byrkit | year = 1970 | title = Elements of Number Theory | publisher = Prentice Hall | location = Englewood Cliffs | lccn = 77-81766 }}
* {{Citation
* {{citation
   | last1 = Ramanujan  | first1 = Srinivasa
   | last1 = Ramanujan  | first1 = Srinivasa
   | title = Collected Papers
   | title = Collected Papers
Line 778: Line 754:
   | location = Providence RI
   | location = Providence RI
   | year = 2000
   | year = 2000
   | isbn = 978-0-8218-2076-6}}
   | isbn = 978-0-8218-2076-6
* {{citation | last=Williams | first=Kenneth S. | title=Number theory in the spirit of Liouville | zbl=1227.11002 | series=London Mathematical Society Student Texts | volume=76 | location=Cambridge | publisher={{wipe|Cambridge University Press}} | isbn=978-0-521-17562-3 | year=2011 }}
}}
* {{citation | last=Williams | first=Kenneth S. | title=Number theory in the spirit of Liouville | zbl=1227.11002 | series=London Mathematical Society Student Texts | volume=76 | location=Cambridge | publisher=Cambridge University Press | isbn=978-0-521-17562-3 | year=2011 }}


==Further reading==
== Further reading ==
* {{citation | first1=Wolfgang | last1=Schwarz | first2=Jürgen | last2=Spilker | title=Arithmetical Functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties | year=1994 | publisher={{wipe|Cambridge University Press}} | isbn=0-521-42725-8 | zbl=0807.11001 | series=London Mathematical Society Lecture Note Series | volume=184 }}
* {{citation | first1=Wolfgang | last1=Schwarz | first2=Jürgen | last2=Spilker | title=Arithmetical Functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties | year=1994 | publisher=Cambridge University Press | isbn=0-521-42725-8 | zbl=0807.11001 | series=London Mathematical Society Lecture Note Series | volume=184 }}


==External links==
== External links ==
* {{springer|title=Arithmetic function|id=p/a013300}}
* {{springer|title=Arithmetic function|id=p/a013300}}
* Matthew Holden, Michael Orrison, Michael Varble [https://web.archive.org/web/20160305132124/https://www.math.hmc.edu/~orrison/research/papers/totient.pdf Yet another Generalization of Euler's Totient Function]
* Matthew Holden, Michael Orrison, Michael Varble [https://web.archive.org/web/20160305132124/https://www.math.hmc.edu/~orrison/research/papers/totient.pdf Yet another Generalization of Euler's Totient Function]
* Huard, Ou, Spearman, and Williams. [http://mathstat.carleton.ca/~williams/papers/pdf/249.pdf Elementary Evaluation of Certain Convolution Sums Involving Divisor Functions]  
* Huard, Ou, Spearman, and Williams. [http://mathstat.carleton.ca/~williams/papers/pdf/249.pdf Elementary Evaluation of Certain Convolution Sums Involving Divisor Functions]  
* Dineva, Rosica, [http://www.mtholyoke.edu/~robinson/reu/reu05/rdineva1.pdf The Euler Totient, the Möbius, and the Divisor Functions] {{Webarchive|url=https://web.archive.org/web/20210116061553/https://www.mtholyoke.edu/~robinson/reu/reu05/rdineva1.pdf |date=2021-01-16 }}
* Dineva, Rosica, [http://www.mtholyoke.edu/~robinson/reu/reu05/rdineva1.pdf The Euler Totient, the Möbius, and the Divisor Functions] {{webarchive|url=https://web.archive.org/web/20210116061553/https://www.mtholyoke.edu/~robinson/reu/reu05/rdineva1.pdf |date=2021-01-16 }}
* László Tóth, [https://arxiv.org/PS_cache/arxiv/pdf/1103/1103.5861v2.pdf Menon's Identity and arithmetical sums representing functions of several variables]
* László Tóth, [https://arxiv.org/PS_cache/arxiv/pdf/1103/1103.5861v2.pdf Menon's Identity and arithmetical sums representing functions of several variables]


{{Classes of natural numbers|collapsed}}
{{Classes of natural numbers|collapsed}}

Latest revision as of 07:38, 15 February 2026

Short description: Function whose domain is the positive integers

Template:Log(x) In number theory, an arithmetic, arithmetical, or number-theoretic function[1][2] is generally any function whose domain is the set of positive integers and whose range is a subset of the complex numbers.[3][4][5] Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n".[6] There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.

An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.

Arithmetic functions are often extremely irregular (see table), but some of them have series expansions in terms of Ramanujan's sum.

Multiplicative and additive functions

An arithmetic function a is

  • completely additive if a(mn) = a(m) + a(n) for all natural numbers m and n;
  • completely multiplicative if a(1) = 1 and a(mn) = a(m)a(n) for all natural numbers m and n;

Two whole numbers m and n are called coprime if their greatest common divisor is 1, that is, if there is no prime number that divides both of them.

Then an arithmetic function a is

  • additive if a(mn) = a(m) + a(n) for all coprime natural numbers m and n;
  • multiplicative if a(1) = 1 and a(mn) = a(m)a(n) for all coprime natural numbers m and n.

Notation

In this article, pf(p) and pf(p) mean that the sum or product is over all prime numbers: pf(p)=f(2)+f(3)+f(5)+ and pf(p)=f(2)f(3)f(5). Similarly, pkf(pk) and pkf(pk) mean that the sum or product is over all prime powers with strictly positive exponent (so k = 0 is not included): pkf(pk)=pk>0f(pk)=f(2)+f(3)+f(4)+f(5)+f(7)+f(8)+f(9)+.

The notations dnf(d) and dnf(d) mean that the sum or product is over all positive divisors of n, including 1 and n. For example, if n = 12, then d12f(d)=f(1)f(2)f(3)f(4)f(6)f(12).

The notations can be combined: pnf(p) and pnf(p) mean that the sum or product is over all prime divisors of n. For example, if n = 18, then p18f(p)=f(2)+f(3), and similarly pknf(pk) and pknf(pk) mean that the sum or product is over all prime powers dividing n. For example, if n = 24, then pk24f(pk)=f(2)f(3)f(4)f(8).

Ω(n), ω(n), νp(n) – prime power decomposition

The fundamental theorem of arithmetic states that any positive integer n can be represented uniquely as a product of powers of primes: n=p1a1pkak where p1 < p2 < ... < pk are primes and the aj are positive integers. (1 is given by the empty product.)

It is often convenient to write this as an infinite product over all the primes, where all but a finite number have a zero exponent. Define the p-adic valuation νp(n) to be the exponent of the highest power of the prime p that divides n. That is, if p is one of the pi then νp(n) = ai, otherwise it is zero. Then n=ppνp(n).

In terms of the above the prime omega functions ω and Ω are defined by

ω(n) = k,
Ω(n) = a1 + a2 + ... + ak.

To avoid repetition, formulas for the functions listed in this article are, whenever possible, given in terms of n and the corresponding pi, ai, ω, and Ω.

Multiplicative functions

σk(n), τ(n), d(n) – divisor sums

σk(n) is the sum of the kth powers of the positive divisors of n, including 1 and n, where k is a complex number.

σ1(n), the sum of the (positive) divisors of n, is usually denoted by σ(n).

Since a positive number to the zero power is one, σ0(n) is therefore the number of (positive) divisors of n; it is usually denoted by d(n) or τ(n) (for the German Teiler = divisors).

σk(n)=i=1ω(n)pi(ai+1)k1pik1=i=1ω(n)(1+pik+pi2k++piaik).

Setting k = 0 in the second product gives τ(n)=d(n)=(1+a1)(1+a2)(1+aω(n)).

φ(n) – Euler totient function

φ(n), the Euler totient function, is the number of positive integers not greater than n that are coprime to n. φ(n)=npn(11p)=n(p11p1)(p21p2)(pω(n)1pω(n)).

Jk(n) – Jordan totient function

Jk(n), the Jordan totient function, is the number of k-tuples of positive integers all less than or equal to n that form a coprime (k + 1)-tuple together with n. It is a generalization of Euler's totient, φ(n) = J1(n). Jk(n)=nkpn(11pk)=nk(p1k1p1k)(p2k1p2k)(pω(n)k1pω(n)k).

μ(n) – Möbius function

μ(n), the Möbius function, is important because of the Möbius inversion formula. See § Dirichlet convolution, below. μ(n)={(1)ω(n)=(1)Ω(n)if ω(n)=Ω(n)0if ω(n)Ω(n).

This implies that μ(1) = 1. (Because Ω(1) = ω(1) = 0.)

τ(n) – Ramanujan tau function

τ(n), the Ramanujan tau function, is defined by its generating function identity: n1τ(n)qn=qn1(1qn)24.

Although it is hard to say exactly what "arithmetical property of n" it "expresses",[7] (τ(n) is (2π)−12 times the nth Fourier coefficient in the q-expansion of the modular discriminant function)[8] it is included among the arithmetical functions because it is multiplicative and it occurs in identities involving certain σk(n) and rk(n) functions (because these are also coefficients in the expansion of modular forms).

cq(n) – Ramanujan's sum

cq(n), Ramanujan's sum, is the sum of the nth powers of the primitive qth roots of unity: cq(n)=gcd(a,q)=11aqe2πiaqn.

Even though it is defined as a sum of complex numbers (irrational for most values of q), it is an integer. For a fixed value of n it is multiplicative in q:

If q and r are coprime, then cq(n)cr(n)=cqr(n).

ψ(n) – Dedekind psi function

The Dedekind psi function, used in the theory of modular functions, is defined by the formula ψ(n)=np|n(1+1p).

Completely multiplicative functions

λ(n) – Liouville function

λ(n), the Liouville function, is defined by λ(n)=(1)Ω(n).

χ(n) – characters

All Dirichlet characters χ(n) are completely multiplicative. Two characters have special notations:

The principal character (mod n) is denoted by χ0(a) (or χ1(a)). It is defined as χ0(a)={1if gcd(a,n)=1,0if gcd(a,n)1.

The quadratic character (mod n) is denoted by the Jacobi symbol for odd n (it is not defined for even n): (an)=(ap1)a1(ap2)a2(apω(n))aω(n).

In this formula (ap) is the Legendre symbol, defined for all integers a and all odd primes p by (ap)={0if a0(modp),+1if a≢0(modp) and for some integer x,ax2(modp)1if there is no such x.

Following the normal convention for the empty product, (a1)=1.

Additive functions

ω(n) – distinct prime divisors

ω(n), defined above as the number of distinct primes dividing n, is additive (see Prime omega function).

Completely additive functions

Ω(n) – prime divisors

Ω(n), defined above as the number of prime factors of n counted with multiplicities, is completely additive (see Prime omega function).

νp(n) – p-adic valuation of an integer n

For a fixed prime p, νp(n), defined above as the exponent of the largest power of p dividing n, is completely additive.

Logarithmic derivative

ld(n)=D(n)n=p primepnvp(n)p, where D(n) is the arithmetic derivative.

Neither multiplicative nor additive

π(x), Π(x), ϑ(x), ψ(x) – prime-counting functions

These important functions (which are not arithmetic functions) are defined for non-negative real arguments, and are used in the various statements and proofs of the prime number theorem. They are summation functions (see the main section just below) of arithmetic functions which are neither multiplicative nor additive.

π(x), the prime-counting function, is the number of primes not exceeding x. It is the summation function of the characteristic function of the prime numbers. π(x)=px1

A related function counts prime powers with weight 1 for primes, 1/2 for their squares, 1/3 for cubes, etc. It is the summation function of the arithmetic function which takes the value 1/k on integers which are the kth power of some prime number, and the value 0 on other integers. Π(x)=pkx1k.

ϑ(x) and ψ(x), the Chebyshev functions, are defined as sums of the natural logarithms of the primes not exceeding x. ϑ(x)=pxlogp, ψ(x)=pkxlogp.

The second Chebyshev function ψ(x) is the summation function of the von Mangoldt function just below.

Λ(n) – von Mangoldt function

Λ(n), the von Mangoldt function, is 0 unless the argument n is a prime power pk, in which case it is the natural logarithm of the prime p: Λ(n)={logpif n=2,3,4,5,7,8,9,11,13,16,=pk is a prime power0if n=1,6,10,12,14,15,18,20,21, is not a prime power.

p(n) – partition function

p(n), the partition function, is the number of ways of representing n as a sum of positive integers, where two representations with the same summands in a different order are not counted as being different: p(n)=|{(a1,a2,ak):0<a1a2akn=a1+a2++ak}|.

λ(n) – Carmichael function

λ(n), the Carmichael function, is the smallest positive number such that aλ(n)1(modn)   for all a coprime to n. Equivalently, it is the least common multiple of the orders of the elements of the multiplicative group of integers modulo n.

For powers of odd primes and for 2 and 4, λ(n) is equal to the Euler totient function of n; for powers of 2 greater than 4 it is equal to one half of the Euler totient function of n: λ(n)={ϕ(n)if n=2,3,4,5,7,9,11,13,17,19,23,25,27,12ϕ(n)if n=8,16,32,64, and for general n it is the least common multiple of λ of each of the prime power factors of n: λ(p1a1p2a2pω(n)aω(n))=lcm[λ(p1a1),λ(p2a2),,λ(pω(n)aω(n))].

h(n) – class number

h(n), the class number function, is the order of the ideal class group of an algebraic extension of the rationals with discriminant n. The notation is ambiguous, as there are in general many extensions with the same discriminant. See quadratic field and cyclotomic field for classical examples.

rk(n) – sum of k squares

rk(n) is the number of ways n can be represented as the sum of k squares, where representations that differ only in the order of the summands or in the signs of the square roots are counted as different. rk(n)=|{(a1,a2,,ak):n=a12+a22++ak2}|

D(n) – Arithmetic derivative

Using the Heaviside notation for the derivative, the arithmetic derivative D(n) is a function such that

Summation functions

Given an arithmetic function a(n), its summation function A(x) is defined by A(x):=nxa(n). A can be regarded as a function of a real variable. Given a positive integer m, A is constant along open intervals m < x < m + 1, and has a jump discontinuity at each integer for which a(m) ≠ 0.

Since such functions are often represented by series and integrals, to achieve pointwise convergence it is usual to define the value at the discontinuities as the average of the values to the left and right: A0(m):=12(n<ma(n)+nma(n))=A(m)12a(m).

Individual values of arithmetic functions may fluctuate wildly – as in most of the above examples. Summation functions "smooth out" these fluctuations. In some cases it may be possible to find asymptotic behaviour for the summation function for large x.

A classical example of this phenomenon[9] is given by the divisor summatory function, the summation function of d(n), the number of divisors of n: lim infnd(n)=2 lim supnlogd(n)loglognlogn=log2 limnd(1)+d(2)++d(n)log(1)+log(2)++log(n)=1.

An average order of an arithmetic function is some simpler or better-understood function which has the same summation function asymptotically, and hence takes the same values "on average". We say that g is an average order of f if nxf(n)nxg(n)

as x tends to infinity. The example above shows that d(n) has the average order log(n).[10]

Dirichlet convolution

Given an arithmetic function a(n), let Fa(s), for complex s, be the function defined by the corresponding Dirichlet series (where it converges):[11] Fa(s):=n=1a(n)ns. Fa(s) is called a generating function of a(n). The simplest such series, corresponding to the constant function a(n) = 1 for all n, is ζ(s) the Riemann zeta function.

The generating function of the Möbius function is the inverse of the zeta function: ζ(s)n=1μ(n)ns=1,s>1.

Consider two arithmetic functions a and b and their respective generating functions Fa(s) and Fb(s). The product Fa(s)Fb(s) can be computed as follows: Fa(s)Fb(s)=(m=1a(m)ms)(n=1b(n)ns).

It is a straightforward exercise to show that if c(n) is defined by c(n):=ij=na(i)b(j)=ina(i)b(ni), then Fc(s)=Fa(s)Fb(s).

This function c is called the Dirichlet convolution of a and b, and is denoted by a*b.

A particularly important case is convolution with the constant function a(n) = 1 for all n, corresponding to multiplying the generating function by the zeta function: g(n)=dnf(d).

Multiplying by the inverse of the zeta function gives the Möbius inversion formula: f(n)=dnμ(nd)g(d).

If f is multiplicative, then so is g. If f is completely multiplicative, then g is multiplicative, but may or may not be completely multiplicative.

Relations among the functions

There are a great many formulas connecting arithmetical functions with each other and with the functions of analysis, especially powers, roots, and the exponential and log functions. The page divisor sum identities contains many more generalized and related examples of identities involving arithmetic functions.

Here are a few examples:

Dirichlet convolutions

δnμ(δ)=δnλ(nδ)|μ(δ)|={1if n=10if n1     where λ is the Liouville function.[12]
δnφ(δ)=n.      [13]
φ(n)=δnμ(nδ)δ=nδnμ(δ)δ.       Möbius inversion
dnJk(d)=nk.      [14]
Jk(n)=δnμ(nδ)δk=nkδnμ(δ)δk.       Möbius inversion
δnδsJr(δ)Js(nδ)=Jr+s(n)      [15]
δnφ(δ)d(nδ)=σ(n).      [16][17]
δn|μ(δ)|=2ω(n).      [18]
|μ(n)|=δnμ(nδ)2ω(δ).       Möbius inversion
δn2ω(δ)=d(n2).      
2ω(n)=δnμ(nδ)d(δ2).       Möbius inversion
δnd(δ2)=d2(n).      
d(n2)=δnμ(nδ)d2(δ).       Möbius inversion
δnd(nδ)2ω(δ)=d2(n).      
δnλ(δ)={1 if n is a square 0 if n is not square.     where λ is the Liouville function.
δnΛ(δ)=logn.      [19]
Λ(n)=δnμ(nδ)log(δ).       Möbius inversion

Sums of squares

For all k4,rk(n)>0.     (Lagrange's four-square theorem).

r2(n)=4dn(4d), [20]

where the Kronecker symbol has the values

(4n)={+1if n1(mod4)1if n3(mod4)0if n is even.

There is a formula for r3 in the section on class numbers below. r4(n)=84ddnd=8(2+(1)n)2ddnd={8σ(n)if n is odd 24σ(n2ν)if n is even , where ν = ν2(n).    [21][22][23] r6(n)=16dnχ(nd)d24dnχ(d)d2, where χ(n)=(4n).[24]

Define the function σk*(n) as[25] σk*(n)=(1)ndn(1)ddk={dndk=σk(n)if n is odd 2ddndk2ddndkif n is even.

That is, if n is odd, σk*(n) is the sum of the kth powers of the divisors of n, that is, σk(n), and if n is even it is the sum of the kth powers of the even divisors of n minus the sum of the kth powers of the odd divisors of n.

r8(n)=16σ3*(n).    [24][26]

Adopt the convention that Ramanujan's τ(x) = 0 if x is not an integer.

r24(n)=16691σ11*(n)+128691{(1)n1259τ(n)512τ(n2)}    [27]

Divisor sum convolutions

Here "convolution" does not mean "Dirichlet convolution" but instead refers to the formula for the coefficients of the product of two power series:

(n=0anxn)(n=0bnxn)=i=0j=0aibjxi+j=n=0(i=0naibni)xn=n=0cnxn.

The sequence cn=i=0naibni is called the convolution or the Cauchy product of the sequences an and bn.
These formulas may be proved analytically (see Eisenstein series) or by elementary methods.[28]

σ3(n)=15{6nσ1(n)σ1(n)+120<k<nσ1(k)σ1(nk)}.    [29]
σ5(n)=121{10(3n1)σ3(n)+σ1(n)+2400<k<nσ1(k)σ3(nk)}.    [30]
σ7(n)=120{21(2n1)σ5(n)σ1(n)+5040<k<nσ1(k)σ5(nk)}=σ3(n)+1200<k<nσ3(k)σ3(nk).    [30][31]
σ9(n)=111{10(3n2)σ7(n)+σ1(n)+4800<k<nσ1(k)σ7(nk)}=111{21σ5(n)10σ3(n)+50400<k<nσ3(k)σ5(nk)}.    [29][32]
τ(n)=65756σ11(n)+691756σ5(n)69130<k<nσ5(k)σ5(nk),     where τ(n) is Ramanujan's function.    [33][34]

Since σk(n) (for natural number k) and τ(n) are integers, the above formulas can be used to prove congruences[35] for the functions. See Ramanujan tau function for some examples.

Extend the domain of the partition function by setting p(0) = 1.

p(n)=1n1knσ(k)p(nk).    [36]   This recurrence can be used to compute p(n).

Peter Gustav Lejeune Dirichlet discovered formulas that relate the class number h of quadratic number fields to the Jacobi symbol.[37]

An integer D is called a fundamental discriminant if it is the discriminant of a quadratic number field. This is equivalent to D ≠ 1 and either a) D is squarefree and D ≡ 1 (mod 4) or b) D ≡ 0 (mod 4), D/4 is squarefree, and D/4 ≡ 2 or 3 (mod 4).[38]

Extend the Jacobi symbol to accept even numbers in the "denominator" by defining the Kronecker symbol: (a2)={0 if a is even(1)a218 if a is odd. 

Then if D < −4 is a fundamental discriminant[39][40] h(D)=1Dr=1|D|r(Dr)=12(D2)r=1|D|/2(Dr).

There is also a formula relating r3 and h. Again, let D be a fundamental discriminant, D < −4. Then[41] r3(|D|)=12(1(D2))h(D).

Let Hn=1+12+13++1n   be the nth harmonic number. Then

σ(n)Hn+eHnlogHn   is true for every natural number n if and only if the Riemann hypothesis is true.    [42]

The Riemann hypothesis is also equivalent to the statement that, for all n > 5040, σ(n)<eγnloglogn (where γ is the Euler–Mascheroni constant). This is Robin's theorem.

pνp(n)=Ω(n).
ψ(x)=nxΛ(n).    [43]
Π(x)=nxΛ(n)logn.    [44]
eθ(x)=pxp.    [45]
eψ(x)=lcm[1,2,,x].    [46]

Menon's identity

In 1965 P Kesava Menon proved[47] gcd(k,n)=11kngcd(k1,n)=φ(n)d(n).

This has been generalized by a number of mathematicians. For example,

  • B. Sury[48] gcd(k1,n)=11k1,k2,,ksngcd(k11,k2,,ks,n)=φ(n)σs1(n).
  • N. Rao[49] gcd(k1,k2,,ks,n)=11k1,k2,,ksngcd(k1a1,k2a2,,ksas,n)s=Js(n)d(n), where a1, a2, ..., as are integers, gcd(a1, a2, ..., as, n) = 1.
  • László Fejes Tóth[50] gcd(k,m)=11kmgcd(k21,m1)gcd(k21,m2)=φ(n)d2m2d1m1φ(gcd(d1,d2))2ω(lcm(d1,d2)), where m1 and m2 are odd, m = lcm(m1, m2).

In fact, if f is any arithmetical function[51][52] gcd(k,n)=11knf(gcd(k1,n))=φ(n)dn(μ*f)(d)φ(d), where * stands for Dirichlet convolution.

Miscellaneous

Let m and n be distinct, odd, and positive. Then the Jacobi symbol satisfies the law of quadratic reciprocity: (mn)(nm)=(1)(m1)(n1)/4.

Let D(n) be the arithmetic derivative. Then the logarithmic derivative D(n)n=p primepnvp(n)p. See Arithmetic derivative for details.

Let λ(n) be Liouville's function. Then

|λ(n)|μ(n)=λ(n)|μ(n)|=μ(n),     and
λ(n)μ(n)=|μ(n)|=μ2(n).    

Let λ(n) be Carmichael's function. Then

λ(n)ϕ(n).     Further,
λ(n)=ϕ(n) if and only if n={1,2,4;3,5,7,9,11, (that is, pk, where p is an odd prime);6,10,14,18, (that is, 2pk, where p is an odd prime).

See Multiplicative group of integers modulo n and Primitive root modulo n.  

2ω(n)d(n)2Ω(n).    [53][54]
6π2<ϕ(n)σ(n)n2<1.    [55]
cq(n)=μ(qgcd(q,n))ϕ(qgcd(q,n))ϕ(q)=δgcd(q,n)μ(qδ)δ.    [56]     Note that  ϕ(q)=δqμ(qδ)δ.    [57]
cq(1)=μ(q).
cq(q)=ϕ(q).
δnd3(δ)=(δnd(δ))2.    [58]   Compare this with 13 + 23 + 33 + ... + n3 = (1 + 2 + 3 + ... + n)2
d(uv)=δgcd(u,v)μ(δ)d(uδ)d(vδ).    [59]
σk(u)σk(v)=δgcd(u,v)δkσk(uvδ2).    [60]
τ(u)τ(v)=δgcd(u,v)δ11τ(uvδ2),     where τ(n) is Ramanujan's function.    [61]

First 100 values of some arithmetic functions

n factorization φ(n) ω(n) Ω(n) λ(n) μ(n) Λ(n) π(n) σ0(n) σ1(n) σ2(n) r2(n) r3(n) r4(n)
1 1 1 0 0 1 1 0 0 1 1 1 4 6 8
2 2 1 1 1 −1 −1 0.69 1 2 3 5 4 12 24
3 3 2 1 1 −1 −1 1.10 2 2 4 10 0 8 32
4 22 2 1 2 1 0 0.69 2 3 7 21 4 6 24
5 5 4 1 1 −1 −1 1.61 3 2 6 26 8 24 48
6 2 · 3 2 2 2 1 1 0 3 4 12 50 0 24 96
7 7 6 1 1 −1 −1 1.95 4 2 8 50 0 0 64
8 23 4 1 3 −1 0 0.69 4 4 15 85 4 12 24
9 32 6 1 2 1 0 1.10 4 3 13 91 4 30 104
10 2 · 5 4 2 2 1 1 0 4 4 18 130 8 24 144
11 11 10 1 1 −1 −1 2.40 5 2 12 122 0 24 96
12 22 · 3 4 2 3 −1 0 0 5 6 28 210 0 8 96
13 13 12 1 1 −1 −1 2.56 6 2 14 170 8 24 112
14 2 · 7 6 2 2 1 1 0 6 4 24 250 0 48 192
15 3 · 5 8 2 2 1 1 0 6 4 24 260 0 0 192
16 24 8 1 4 1 0 0.69 6 5 31 341 4 6 24
17 17 16 1 1 −1 −1 2.83 7 2 18 290 8 48 144
18 2 · 32 6 2 3 −1 0 0 7 6 39 455 4 36 312
19 19 18 1 1 −1 −1 2.94 8 2 20 362 0 24 160
20 22 · 5 8 2 3 −1 0 0 8 6 42 546 8 24 144
21 3 · 7 12 2 2 1 1 0 8 4 32 500 0 48 256
22 2 · 11 10 2 2 1 1 0 8 4 36 610 0 24 288
23 23 22 1 1 −1 −1 3.14 9 2 24 530 0 0 192
24 23 · 3 8 2 4 1 0 0 9 8 60 850 0 24 96
25 52 20 1 2 1 0 1.61 9 3 31 651 12 30 248
26 2 · 13 12 2 2 1 1 0 9 4 42 850 8 72 336
27 33 18 1 3 −1 0 1.10 9 4 40 820 0 32 320
28 22 · 7 12 2 3 −1 0 0 9 6 56 1050 0 0 192
29 29 28 1 1 −1 −1 3.37 10 2 30 842 8 72 240
30 2 · 3 · 5 8 3 3 −1 −1 0 10 8 72 1300 0 48 576
31 31 30 1 1 −1 −1 3.43 11 2 32 962 0 0 256
32 25 16 1 5 −1 0 0.69 11 6 63 1365 4 12 24
33 3 · 11 20 2 2 1 1 0 11 4 48 1220 0 48 384
34 2 · 17 16 2 2 1 1 0 11 4 54 1450 8 48 432
35 5 · 7 24 2 2 1 1 0 11 4 48 1300 0 48 384
36 22 · 32 12 2 4 1 0 0 11 9 91 1911 4 30 312
37 37 36 1 1 −1 −1 3.61 12 2 38 1370 8 24 304
38 2 · 19 18 2 2 1 1 0 12 4 60 1810 0 72 480
39 3 · 13 24 2 2 1 1 0 12 4 56 1700 0 0 448
40 23 · 5 16 2 4 1 0 0 12 8 90 2210 8 24 144
41 41 40 1 1 −1 −1 3.71 13 2 42 1682 8 96 336
42 2 · 3 · 7 12 3 3 −1 −1 0 13 8 96 2500 0 48 768
43 43 42 1 1 −1 −1 3.76 14 2 44 1850 0 24 352
44 22 · 11 20 2 3 −1 0 0 14 6 84 2562 0 24 288
45 32 · 5 24 2 3 −1 0 0 14 6 78 2366 8 72 624
46 2 · 23 22 2 2 1 1 0 14 4 72 2650 0 48 576
47 47 46 1 1 −1 −1 3.85 15 2 48 2210 0 0 384
48 24 · 3 16 2 5 −1 0 0 15 10 124 3410 0 8 96
49 72 42 1 2 1 0 1.95 15 3 57 2451 4 54 456
50 2 · 52 20 2 3 −1 0 0 15 6 93 3255 12 84 744
51 3 · 17 32 2 2 1 1 0 15 4 72 2900 0 48 576
52 22 · 13 24 2 3 −1 0 0 15 6 98 3570 8 24 336
53 53 52 1 1 −1 −1 3.97 16 2 54 2810 8 72 432
54 2 · 33 18 2 4 1 0 0 16 8 120 4100 0 96 960
55 5 · 11 40 2 2 1 1 0 16 4 72 3172 0 0 576
56 23 · 7 24 2 4 1 0 0 16 8 120 4250 0 48 192
57 3 · 19 36 2 2 1 1 0 16 4 80 3620 0 48 640
58 2 · 29 28 2 2 1 1 0 16 4 90 4210 8 24 720
59 59 58 1 1 −1 −1 4.08 17 2 60 3482 0 72 480
60 22 · 3 · 5 16 3 4 1 0 0 17 12 168 5460 0 0 576
61 61 60 1 1 −1 −1 4.11 18 2 62 3722 8 72 496
62 2 · 31 30 2 2 1 1 0 18 4 96 4810 0 96 768
63 32 · 7 36 2 3 −1 0 0 18 6 104 4550 0 0 832
64 26 32 1 6 1 0 0.69 18 7 127 5461 4 6 24
65 5 · 13 48 2 2 1 1 0 18 4 84 4420 16 96 672
66 2 · 3 · 11 20 3 3 −1 −1 0 18 8 144 6100 0 96 1152
67 67 66 1 1 −1 −1 4.20 19 2 68 4490 0 24 544
68 22 · 17 32 2 3 −1 0 0 19 6 126 6090 8 48 432
69 3 · 23 44 2 2 1 1 0 19 4 96 5300 0 96 768
70 2 · 5 · 7 24 3 3 −1 −1 0 19 8 144 6500 0 48 1152
71 71 70 1 1 −1 −1 4.26 20 2 72 5042 0 0 576
72 23 · 32 24 2 5 −1 0 0 20 12 195 7735 4 36 312
73 73 72 1 1 −1 −1 4.29 21 2 74 5330 8 48 592
74 2 · 37 36 2 2 1 1 0 21 4 114 6850 8 120 912
75 3 · 52 40 2 3 −1 0 0 21 6 124 6510 0 56 992
76 22 · 19 36 2 3 −1 0 0 21 6 140 7602 0 24 480
77 7 · 11 60 2 2 1 1 0 21 4 96 6100 0 96 768
78 2 · 3 · 13 24 3 3 −1 −1 0 21 8 168 8500 0 48 1344
79 79 78 1 1 −1 −1 4.37 22 2 80 6242 0 0 640
80 24 · 5 32 2 5 −1 0 0 22 10 186 8866 8 24 144
81 34 54 1 4 1 0 1.10 22 5 121 7381 4 102 968
82 2 · 41 40 2 2 1 1 0 22 4 126 8410 8 48 1008
83 83 82 1 1 −1 −1 4.42 23 2 84 6890 0 72 672
84 22 · 3 · 7 24 3 4 1 0 0 23 12 224 10500 0 48 768
85 5 · 17 64 2 2 1 1 0 23 4 108 7540 16 48 864
86 2 · 43 42 2 2 1 1 0 23 4 132 9250 0 120 1056
87 3 · 29 56 2 2 1 1 0 23 4 120 8420 0 0 960
88 23 · 11 40 2 4 1 0 0 23 8 180 10370 0 24 288
89 89 88 1 1 −1 −1 4.49 24 2 90 7922 8 144 720
90 2 · 32 · 5 24 3 4 1 0 0 24 12 234 11830 8 120 1872
91 7 · 13 72 2 2 1 1 0 24 4 112 8500 0 48 896
92 22 · 23 44 2 3 −1 0 0 24 6 168 11130 0 0 576
93 3 · 31 60 2 2 1 1 0 24 4 128 9620 0 48 1024
94 2 · 47 46 2 2 1 1 0 24 4 144 11050 0 96 1152
95 5 · 19 72 2 2 1 1 0 24 4 120 9412 0 0 960
96 25 · 3 32 2 6 1 0 0 24 12 252 13650 0 24 96
97 97 96 1 1 −1 −1 4.57 25 2 98 9410 8 48 784
98 2 · 72 42 2 3 −1 0 0 25 6 171 12255 4 108 1368
99 32 · 11 60 2 3 −1 0 0 25 6 156 11102 0 72 1248
100 22 · 52 40 2 4 1 0 0 25 9 217 13671 12 30 744
n factorization φ(n) ω(n) Ω(n) 𝜆(n) Template:Mu(n) Λ(n) π(n) σ0(n) σ1(n) σ2(n) r2(n) r3(n) r4(n)

Notes

  1. (Long 1972)
  2. (Pettofrezzo Byrkit)
  3. Niven & Zuckerman, 4.2.
  4. Nagell, I.9.
  5. Bateman & Diamond, 2.1.
  6. Hardy & Wright, intro. to Ch. XVI
  7. Hardy, Ramanujan, § 10.2
  8. Apostol, Modular Functions ..., § 1.15, Ch. 4, and ch. 6
  9. Hardy & Wright, §§ 18.1–18.2
  10. Gérald Tenenbaum (1995). Introduction to Analytic and Probabilistic Number Theory. Cambridge studies in advanced mathematics. 46. Cambridge University Press. pp. 36–55. ISBN 0-521-41261-7. 
  11. Hardy & Wright, § 17.6, show how the theory of generating functions can be constructed in a purely formal manner with no attention paid to convergence.
  12. Hardy & Wright, Thm. 263
  13. Hardy & Wright, Thm. 63
  14. see references at Jordan's totient function
  15. Holden et al. in external links The formula is Gegenbauer's
  16. Hardy & Wright, Thm. 288–290
  17. Dineva in external links, prop. 4
  18. Hardy & Wright, Thm. 264
  19. Hardy & Wright, Thm. 296
  20. Hardy & Wright, Thm. 278
  21. Hardy & Wright, Thm. 386
  22. Hardy, Ramanujan, eqs 9.1.2, 9.1.3
  23. Koblitz, Ex. III.5.2
  24. 24.0 24.1 Hardy & Wright, § 20.13
  25. Hardy, Ramanujan, § 9.7
  26. Hardy, Ramanujan, § 9.13
  27. Hardy, Ramanujan, § 9.17
  28. Williams, ch. 13; Huard, et al. (external links).
  29. 29.0 29.1 Ramanujan, On Certain Arithmetical Functions, Table IV; Papers, p. 146
  30. 30.0 30.1 Koblitz, ex. III.2.8
  31. Koblitz, ex. III.2.3
  32. Koblitz, ex. III.2.2
  33. Koblitz, ex. III.2.4
  34. Apostol, Modular Functions ..., Ex. 6.10
  35. Apostol, Modular Functions..., Ch. 6 Ex. 10
  36. G.H. Hardy, S. Ramannujan, Asymptotic Formulæ in Combinatory Analysis, § 1.3; in Ramannujan, Papers p. 279
  37. Landau, p. 168, credits Gauss as well as Dirichlet
  38. Cohen, Def. 5.1.2
  39. Cohen, Corr. 5.3.13
  40. see Edwards, § 9.5 exercises for more complicated formulas.
  41. Cohen, Prop 5.3.10
  42. See Divisor function.
  43. Hardy & Wright, eq. 22.1.2
  44. See prime-counting functions.
  45. Hardy & Wright, eq. 22.1.1
  46. Hardy & Wright, eq. 22.1.3
  47. László Tóth, Menon's Identity and Arithmetical Sums ..., eq. 1
  48. Tóth, eq. 5
  49. Tóth, eq. 3
  50. Tóth, eq. 35
  51. Tóth, eq. 2
  52. Tóth states that Menon proved this for multiplicative f in 1965 and V. Sita Ramaiah for general f.
  53. Hardy Ramanujan, eq. 3.10.3
  54. Hardy & Wright, § 22.13
  55. Hardy & Wright, Thm. 329
  56. Hardy & Wright, Thms. 271, 272
  57. Hardy & Wright, eq. 16.3.1
  58. Ramanujan, Some Formulæ in the Analytic Theory of Numbers, eq. (C); Papers p. 133. A footnote says that Hardy told Ramanujan it also appears in an 1857 paper by Liouville.
  59. Ramanujan, Some Formulæ in the Analytic Theory of Numbers, eq. (F); Papers p. 134
  60. Apostol, Modular Functions ..., ch. 6 eq. 4
  61. Apostol, Modular Functions ..., ch. 6 eq. 3

References

Further reading

  • Schwarz, Wolfgang; Spilker, Jürgen (1994), Arithmetical Functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties, London Mathematical Society Lecture Note Series, 184, Cambridge University Press, ISBN 0-521-42725-8