Biology:List of psychoactive plants

From HandWiki
Short description: List of plant species with reported psychoactive properties
Salvia divinorum, a dissociative hallucinogenic sage
Psychoactive plant phylogeny with active ingredient indicated

This is a list of plant species that, when consumed by humans, are known or suspected to produce psychoactive effects: changes in nervous system function that alter perception, mood, consciousness, cognition or behavior. Many of these plants are used intentionally as psychoactive drugs, for medicinal, religious, and/or recreational purposes. Some have been used ritually as entheogens for millennia.[1][2]

The plants are listed according to the specific psychoactive chemical substances they contain; many contain multiple known psychoactive compounds.

Cannabinoids

Cannabis plant
Main page: Biology:Cannabis

Species of the genus Cannabis, known colloquially as marijuana, including Cannabis sativa and Cannabis indica, is a popular psychoactive plant that is often used medically and recreationally. The principal psychoactive substance in Cannabis, tetrahydrocannabinol (THC), contains no nitrogen, unlike many (but not all) other psychoactive substances[lower-alpha 1] and is not an indole, tryptamine, phenethylamine, anticholinergic (deliriant) or dissociative drug. THC is just one of more than 100 identified cannabinoid compounds in Cannabis, which also include cannabinol (CBN) and cannabidiol (CBD).

Cannabis plants vary widely, with different strains producing dynamic balances of cannabinoids (THC, CBD, etc.) and yielding markedly different effects. Popular strains are often hybrids of C. sativa and C. indica.

The medicinal effects of cannabis are widely studied, and are active topics of research both at universities and private research firms. Many jurisdictions have laws regulating or prohibiting the cultivation, sale and/or use of medical and recreational cannabis.[citation needed]

Tryptamines

DMT molecule
5-MeO-DMT molecule
Delosperma cooperi flower
Delosperma lydenbergense flower
Delosperma nubigenum

Many of the psychedelic plants contain dimethyltryptamine (DMT), or other tryptamines, which are either snorted (Virola, Yopo snuffs), vaporized, or drunk with MAOIs (Ayahuasca). It cannot simply be eaten as it is not orally active without an MAOI and it needs to be extremely concentrated to be vaporized.

Acanthaceae

Species, Alkaloid content, where given, refers to dried material

Aceraceae

  • Acer saccharinum (silver maple) was found to contain the indole alkaloid gramine (not active and extremely toxic) 0.05% in the leaves, so it is possible that other members of this plant family contain active compounds.[3]

Aizoaceae

  • Delosperma acuminatum, DMT, 5-MeO-DMT[4][unreliable source?]
  • Delosperma cooperi, DMT, 5-MeO-DMT[4]
  • Delosperma ecklonis, DMT[4]
  • Delosperma esterhuyseniae, DMT[4]
  • Delosperma hallii, 5-MeO-DMT[4]
  • Delosperma harazianum, DMT, 5-MeO-DMT[4]
    Delosperma harazianum
    Shibam, DMT[4]
  • Delosperma hirtum, DMT[4]
    Delosperma hallii
    aff. litorale
  • Delosperma lydenbergense, DMT, 5-MeO-DMT[4]
  • Delosperma nubigenum, 5-MeO-DMT[4]
  • Delosperma pageanum, DMT, 5-MeO-DMT[4]
  • Delosperma pergamentaceum, Traces of DMT[4]
  • Delosperma tradescantioides, DMT[4]

Apocynaceae

Asteraceae

Erythroxylaceae

  • Erythroxylum pungens: DMT[7]

Fabaceae (Leguminosae)

Alpina mueller
Acacia angustissima
Acacia-berlandieri flower
Acacia catechu
Acacia confusa
Acacia phlebophylla
Starr 020911-0004 Acacia podalyriifolia.jpg
Bufotenin molecule
Anadenanthera colubrina
Anadenanthera peregrina
Lespedeza capitata
Codariocalyx motorius
Virola theiodora
Lespedeza bicolor
Mimosa scabrella

1,2,3,4-Tetrahydro-6-methoxy-2,9-dimethyl-beta-carboline, Plant,[47] 1,2,3,4-Tetrahydro-6-methoxy-2-methyl-beta-carboline, Plant,[44] 5-Methoxy-N,N-dimethyltryptamine, Bark,[44] 5-Methoxy-N-methyltryptamine, Bark,[44] Bufotenin, plant,[44] beans,[43] Bufotenin N-oxide, Fruit,[44] beans,[43] N,N-Dimethyltryptamine-oxide, Fruit[44][48]

Malpighiaceae

Myristicaceae

Ochnaceae

Pandanaceae

Poaceae (Gramineae)

Some Graminae (grass) species contain gramine, which can cause brain damage, other organ damage, central nervous system damage and death in sheep.[66]

None of the above alkaloids are said to have been found in Phalaris californica, Phalaris canariensis, Phalaris minor and hybrids of P. arundinacea together with P. aquatica.[68]

Polygonaceae

Rubiaceae

Rutaceae[75][76]

  • Dictyoloma incanescens, 5-MeO-DMT in leaves,[64] 0.04% 5-MeO-DMT in bark[54]
  • Dutaillyea drupacea, > 0.4% 5-MeO-DMT in leaves[32]
  • Dutaillyea oreophila, 5-MeO-DMT[6] in leaves
  • Tetradium ruticarpum(syn. Evodia rutaecarpa), 5-MeO-DMT[6] in leaves, fruit and roots
  • Limonia acidissima, Traces of DMT;[6] 5-MeO-DMT in stems[citation needed]
  • Euodia leptococca (formerly Melicope), 0.2% total alkaloids, 0.07% 5-MeO-DMT; 5-MeO-DMT in leaves and stems, also "5-MeO-DMT-Oxide and a beta-carboline"[60]
  • Pilocarpus organensis, DMT, 5-MeO-DMT in leaves[77] (Might also contain pilocarpine)
  • Vepris ampody, Up to 0.2% DMT in leaves and branches[54]
  • Zanthoxylum arborescens, Traces of DMT;[6] DMT in leaves
  • Zanthoxylum procerum, DMT in leaves[citation needed]
  • Citrus limon, DMT, N-Methylated tryptamine derivative in leaves[78][79]
  • Citrus sinesis,DMT, N-Methylated tryptamine derivative[78][79]
  • Citrus bergamia,DMT, N-Methylated tryptamine derivative[78][79]
  • Mandarin orange Traces of N-methylated tryptamine derivative in leaf.[80][79]
  • Chinotto Tree, N-Methylated tryptamine derivative in leaf[80][79]
  • Citrus medica, N-Methylated tryptamine derivative in leaf[80][79]

Phenethylamines

Main page: Biology:Psychoactive cactus
Mescaline molecule
DMPEA molecule
Peyote

Species, Alkaloid Content (Fresh)Alkaloid Content (Dried)

Beta-carbolines

Harmaline, a Beta-carboline
Harmalol molecule
THH molecule
Apocynum cannabinum
Calycanthus
Koeh
Elaeagnus angustifolia
Festuca arundinacea

Beta-carbolines are "reversible" MAO-A inhibitors. They are found in some plants used to make Ayahuasca. In high doses the harmala alkaloids are somewhat hallucinogenic on their own. β-carboline is a benzodiazepine receptor inverse agonist and can therefore have convulsive, anxiogenic and memory enhancing effects.[93]

Apocynaceae

Bignoniaceae

Calycanthaceae

Chenopodiaceae

  • Hammada leptoclada, Harman;[6] Tetrahydroharman, etc.
  • Kochia scoparia, Harman;[6] Harmine, etc.

Combretaceae

  • Guiera senegalensis, Tetrahydroharmine;[6] Harman, etc.

Cyperaceae

Elaeagnaceae

Gramineae

Lauraceae

  • Nectandra megapotamica, Beta-carbolines[94]

Leguminosae

Loganiaceae

Malpighiaceae

  • Banisteriopsis argentia, 5-methoxytetrahydroharman, (−)-N(6)-methoxytetrahydroharman, dimethyltryptamine-N(6)-oxide[8]
  • Banisteriopsis caapi, Harmine 0.31–0.84%,[95] tetrahydroharmine, telepathine, dihydroshihunine,[96] 5-MeO-DMT in bark[97]
  • Banisteriopsis inebrians, Beta-carbolines[94]
  • Banisteriopsis lutea, Harmine, telepathine[8]
  • Banisteriopsis metallicolor, Harmine, telepathine[8]
  • Banisteriopsis muricata Harmine up to 6%, harmaline up to 4%, plus DMTCite error: Closing </ref> missing for <ref> tag[failed verification]

Myristicaceae

Ochnaceae

Palmae

  • Plectocomiopsis geminiflora, Beta-carbolines[94]

Papaveraceae

Passifloraceae

Badea

Polygonaceae

  • Calligonum minimum, Beta-carbolines[94]
  • Leptactinia densiflora, Tetrahydroharmine,[6] etc.
  • Ophiorrhiza japonica, Harman[6]
  • Pauridiantha callicarpoides, Harman[6]
  • Pauridiantha dewevrei, Harman[6]
  • Pauridiantha lyalli, Harman[6]
  • Pauridiantha viridiflora, Harman[6]
  • Simira klugei, Harman[6]
  • Simira rubra, Harman[6]

Rubiaceae

  • Borreria verticillata, Beta-carbolines[94]
  • Leptactinia densiflora, Beta-carbolines[94]
  • Nauclea diderrichii, Beta-carbolines[94]
  • Ophiorrhiza japonica, Beta-carbolines[94]
  • Pauridiantha callicarpoides, Beta-carbolines[94]
  • Pauridiantha dewevrei, Beta-carbolines[94]
  • Pauridiantha yalli, Beta-carbolines[94]
  • Pauridiantha viridiflora, Beta-carbolines[94]
  • Pavetta lanceolata, Beta-carbolines[94]
  • Psychotria carthagenensis, Beta-carbolines[94]
  • Psychotria viridis, Beta-carbolines[94]
  • Simira klugei, Beta-carbolines[94]
  • Simira rubra, Beta-carbolines[94]
  • Uncaria attenuata, Beta-carbolines[94]
  • Uncaria canescens, Beta-carbolines[94]
  • Uncaria orientalis, Beta-carbolines[94]

Rutaceae

Sapotaceae

Simaroubaceae

Solanaceae

Symplocaceae

Tiliaceae

Zygophyllaceae

Opiates

Opiates v opioids with different major subclassifications indicated

Opiates are the natural products of many plants, the most famous and historically relevant of which is Papaver somniferum. Opiates are defined as natural products (or their esters and salts that revert to the natural product in the human body), whereas opioids are defined as semi-synthetic or fully synthetic compounds that trigger the Opioid receptor of the mu sub-type. Other opiate receptors, such as kappa- and delta-opiate receptors are part of this system but do not cause the characteristic behavioral depression and analgesia which is mostly mediated through the mu-opiate receptor.

An opiate, in classical pharmacology, is a substance derived from opium. In more modern usage, the term opioid is used to designate all substances, both natural and synthetic, that bind to opioid receptors in the brain (including antagonists). Opiates are alkaloid compounds naturally found in the Papaver somniferum plant (opium poppy). The psychoactive compounds found in the opium plant include morphine, codeine, and thebaine. Opiates have long been used for a variety of medical conditions with evidence of opiate trade and use for pain relief as early as the eighth century AD. Opiates are considered drugs with moderate to high abuse potential and are listed on various "Substance-Control Schedules" under the Uniform Controlled Substances Act of the United States of America.

In 2014, between 13 and 20 million people used opiates recreationally (0.3% to 0.4% of the global population between the ages of 15 and 65). According to the CDC, from this population, there were 47,000 deaths, with a total of 500,000 deaths from 2000 to 2014. In 2016, the World Health Organization reported that 27 million people suffer from Opioid use disorder. They also reported that in 2015, 450,000 people died as a result of drug use, with between a third and a half of that number being attributed to opioids.

Papaver somniferum flower and scored capsule with latex.

Papaver somniferum

The plant contains a latex that thickens into opium when it is dried. Opium contains approximately 40 alkaloids, which are summarized as opium alkaloids.[6] The main psychoactive alkaloids are:

Mitragyna speciosa

Mitragynine
Mitragynine
7-Hydroxymitragynine
7-Hydroxymitragynine
Mitragynine pseudoindoxyl
Mitragynine pseudoindoxyl

Picralima nitida

Akuammicine
Akuammicine
Pericine
Pericine

Psychotria colorata

Hodgkinsine

Aspidosperma spp.

Plants containing other psychoactive substances

Plants containing other psychoactive substances
Substance(s) Plant Comments
Alpha-Asaron.svg

Asarone

Acorus calamus1.jpg

Acorus calamus

Yohimbine structure.svg

Yohimbine

Alchornea floribunda α2-adrenergic receptor antagonist.[citation needed]
Arecoline.svg Arecaidine.svg

Arecoline, Arecaidine

Beetle palm with nut bunch.jpg

Areca catechu

GABA uptake inhibitor,[108][109] stimulant.[110]
Protopine structure.svg

Protopine

Stachelmohn.JPG

Argemone mexicana

Used by Chinese residents of Mexico during the early 20th century as a legal substitute for opium and currently smoked as a marijuana substitute.[citation needed]
Ergine.png

Ergine

Starr 050107-2974 Argyreia nervosa.jpg

Argyreia nervosa (Hawaiian Baby Woodrose)

Seeds contain ergine (also known as LSA), often 50-150X the amounts found in Ipomoea violacea. LSA is a hallucinogen.[111]
(-)-alpha-Thujon.svg

Thujone

Artemisia absinthium P1210748.jpg

Artemisia absinthium

Also called "wormwood". GABA receptor antagonist.[112]
Quinoline & Aporphine alkaloids Asimina triloba3.jpg

Asimina triloba (Paw Paw)

Identical alkaloid to morphine.[113]
L-Scopolamin.svg 150px Hyoscyamine.svg

Tropane alkaloids (scopolamine, atropine, hyoscyamine)

Atropa belladonna - Köhler–s Medizinal-Pflanzen-018.jpg

Atropa belladonna

Commonly known as 'deadly nightshade'. An anticholinergic deliriant.[114]
L-Scopolamin.svg 150px Hyoscyamine.svg

Tropane alkaloids (scopolamine, atropine, and hyoscyamine)

Brugmansia.jpg

Brugmansia

Commonly known as 'angel's trumpets'. An anticholinergic deliriant.[114]
Unknown Calea zacatechichi cutting.jpg

Calea zacatechichi

Produces vivid dreams after smoking. It is also employed by the Chontal people as a medicinal herb against gastrointestinal disorders, and is used as an appetizer, cathartic anti-dysentery remedy, and as a fever-reducing agent. Its psychedelic properties do not become apparent until the user is asleep. Reports describe rituals that involve drinking it as a tea to induce divinatory or lucid dreams[115] due to its properties as an oneirogen.[116]
Caffeine structure.svg

Caffeine

Csinensis.jpg

Camellia sinensis

Tea leaves, tea, native to Asia.[citation needed]
S-Cathinone.svg

Cathinone

Catha edulis.jpg

Catha edulis

Khat, commonly chewed, produces a stimulant effect.[117]
Vincristine.svg

Vincristine

Catharanthus roseus24 08 2012 (1).JPG

Catharanthus roseus

Catharanthus roseus is (perhaps unpleasantly) "hallucinogenic."[118][unreliable source?]
Unknown Cestrum nocturnum (2464189820).jpg

Cestrum nocturnum

Commonly referred to as 'night-blooming jasmine', 'lady of the night', and 'poisonberry'. It has an unknown mechanism of action.[citation needed]
Caffeine structure.svg

Caffeine

Starr 070308-5472 Coffea arabica.jpg

Coffea arabica

Coffee beans, coffee, native to Africa.[119]
Caffeine structure.svg

Caffeine

Cola acuminata - Köhler–s Medizinal-Pflanzen-190.jpg

Cola

Cola or kola nut, traditional additive to cola, native to Africa.[citation needed]
(Unknown) Coleus-1.jpg

Coleus

Unknown
Bulbocapnine skeletal.svg

Bulbocapnine

Corydalis ambigua.jpg

Corydalis solida, cava

Bulbocapnine, Nantenine, Tetrahydropalmatine
L-Scopolamin.svg Atropine.svg

Tropane alkaloids (Scopolamine, Atropine)

Sacred datura (Datura wrightii) (14212557338).jpg

Datura

Also known as 'thorn apple', 'devil's trumpets', 'loco weed', and 'Jimson weed'. Scopolamine and Atropine are both anticholinergics[120][121] which produce hallucinogenic and deliriant effects. It has an extensive history of being used recreationally.[122]
(-)-Cytisine.svg

Cytisine

Calia secundiflora flowers.jpg

Dermatophyllum

Nicotine-like effects. partial agonist of nicotinic acetylcholine receptors (nAChRs).[123]
Unknown Desfontainia spinosa.jpg

Desfontainia spinosa

Causes visions.[124]
Nicotine.svg

Nicotine

Duboisia hopwoodii.jpg

Duboisia hopwoodii

Pituri
Unknown Entada rheedii05.jpg

Entada rheedii

African dream herb.[citation needed]
Ephedrine.svg

Ephedrine

Ephedra sinica alexlomas.jpg

Ephedra sinica

Ephedra
Cocaine.svg

Cocaine

Erythroxylum coca - Köhler–s Medizinal-Pflanzen-204.jpg

Erythroxylum coca

Coca. Widely used illegal stimulant, produces hallucination in overdose, native to South America.[citation needed]
Unknown Colpfl25.jpg

Fittonia albivenis

Nerve or mosaic plant, said to produce vision of eyeballs
Himbacine.svg

Himbacine

Galbulimima belgraveana Galbulimima belgraveana is rich in alkaloids and twenty-eight alkaloids have been isolated including himbacine.[citation needed]
Glaucin V3.svg

Glaucine

Glaucium flavum03.jpg

Glaucium flavum

Hallucinogenic effects.[125]
Cryogenine.svg

Possibly Cryogenine[citation needed]

Heimia myrtifolia Auditory
Cryogenine.svg

Possibly Cryogenine[citation needed]

Heimia salicifolia flowers by Jules Jardinier.jpg

Heimia salicifolia

Auditory[126][better source needed]
Lobeline structure.svg Nicotine.svg

Lobeline, Nicotine

Hippobroma longiflora Belize 2018 2.jpeg

Hippobroma longiflora

Star of Bethlehem
Hyperforin.svg

Hyperforin

Saint John's wort flowers.jpg

Hypericum perforatum

Saint John's wort
Tropane alkaloids Henbane1.JPG

Hyoscyamus

Henbane
Caffeine structure.svg Theobromine.svg

Caffeine, Theobromine, Dimethylxanthines

View of Ilex guayusa from above.jpg

Ilex guayusa

Ilex guayusa is used as an additive to some versions of Ayahuasca. According to the Ecuadorian indigenous, it is also slightly hallucinogenic on its own, when drunk in high enough quantities.[citation needed]
Ergine.svg

Ergine

Ipomoea violacea.jpg

Ipomoea tricolor & Ipomoea violacea

Ergine in seeds; up to 0.12% total[127] Produces psychedelic effects.
Unknown Justicia pectoralis by Scott Zona - 001.jpg

Justicia pectoralis

Unknown
Lactucarium Lactuca virosa - Köhler–s Medizinal-Pflanzen-213.jpg

Lactuca virosa

Lactucarium
Lagochilin.png

Lagochilin

Lagochilus inebrians.jpg

Lagochilus inebrians

Lagochilin is thought to be responsible for the sedative, hypotensive and hemostatic effects of this plant.[citation needed]
Pukateine Structure.svg

Pukateine

Old Rimu in Kaitoke Park.jpg

Laurelia novae-zelandiae

Pukateine
Unknown RolliniaDeliciosa.jpg

Rollinia mucosa

Rollinia mucosa is said to be a narcotic.[113]
Leonurine structure.png

Leonurine

Leonotis leonurus flower.jpg

Leonotis leonurus

Both leaves and flowers (where most concentrated) contain Leonurine. (Effects reminiscent of marijuana)[citation needed]
Nicotine.svg

Nicotine[128]

Leucas aspera plant.jpg
Leucas aspera
Nicotine
Leonurine structure.png

Leonurine

Leonotis nepetifolia1.jpg

Leonotis nepetifolia

Both leaves and flowers (where most concentrated) contain Leonurine and several compounds. (Effects reminiscent of marijuana)[citation needed][129]
Lobeline.svg

Lobeline

Lobelia inflata - Köhler–s Medizinal-Pflanzen-218.jpg

Lobelia inflata

Indian tobacco
Unknown Sweetbay Magnolia Magnolia virginiana Comparison 4400px.jpg

Magnolia virginiana

[6]
L-Scopolamin.svg 150px Hyoscyamine.svg

Tropane alkaloids (scopolamine, atropine, and hyoscyamine)

Mandragora officinarum 002.JPG

Mandragora officinarum

Mandrake has deliriant and anticholinergic properties.[114]
Ergine.svg

Ergine

2006-10-18Mirabilis jalapa10.jpg

Some Mirabilis spp.

Possibly contains ergine[citation needed], a hallucinogen.
Mitragynine.svg Mitragynine-pseudoindoxyl.svg

Mitragynine, Mitragynine pseudoindoxyl

Mitragyna speciosa111.JPG

Mitragyna speciosa

Usually referred to as kratom. Has opioid-like and stimulant properties.[130]
Myristicin.svg

Myristicin

Myristica fragrans - Köhler–s Medizinal-Pflanzen-097.jpg

Myristica fragrans

Nutmeg
Aporphine.svg

Aporphine

Sacred lotus Nelumbo nucifera.jpg

Nelumbo nucifera

Sacred lotus
Nepetalactone.svg

Nepetalactone

Catnip flowers.jpg

Nepeta cataria

Catnip
Nicotine.svg

Nicotine

Tabak P9290021.JPG

Nicotiana tabacum

Tobacco. Can cause hallucinations in very large doses.[citation needed]
Aporphine.svg

Aporphine, Apomorphine

Nymphaea caerulea.jpg

Nymphaea caerulea

Blue lotus or lily. Recent studies have shown Nymphaea caerulea to have psychedelic properties, and may have been used as a sacrament in ancient Egypt and certain ancient South American cultures. Dosages of 5 to 10 grams of the flowers induces slight stimulation, a shift in thought processes, enhanced visual perception, and mild closed-eye visuals.[131] Nymphaea caerulea is related to, and possesses similar activity as Nelumbo nucifera, the Sacred Lotus. Both Nymphaea caerulea and Nelumbo nucifera contain the alkaloids nuciferine and apomorphine, which have been recently isolated by independent labs.[citation needed]

These psychoactive effects make Nymphaea caerulea a likely candidate (among several) for the lotus plant eaten by the mythical Lotophagi in Homer's Odyssey.

Used in aromatherapy, Nymphaea caerulea is purported to have a "divine" essence, bringing euphoria, heightened awareness and tranquility.[citation needed]

Other sources cite anti-spasmodic and sedative, purifying and calming properties.

Ginsenoside Rg1.png

Ginsenosides

Panax quinquefolius.jpg

Panax

Ginseng
Morphin - Morphine.svg

Morphine

Papaver somniferum - Köhler–s Medizinal-Pflanzen-102.jpg

Papaver somniferum

Opium. Widely used analgesic, native to the Old World.[132]
Unknown Pokeweed bush in Northumberland County, Pennsylvania.JPG

Phytolacca americana

Narcotic and toxic when the root is consumed.[113]
Yohimbine structure.svg

Yohimbine

Pau de cabinda.jpg

Pausinystalia johimbe

α2-adrenergic receptor antagonist.[citation needed]
Unknown Pedicularis densiflora mt. diablo.JPG

Pedicularis densiflora

Indian warrior
Kavalactone-general-numbered.svg

Kavalactones

Starr 040318-0058 Piper methysticum.jpg

Piper methysticum

An anxiolytic[133] and hypnotic.[134] Often advertised as a 'healthier' alternative to alcohol.[citation needed]
Ergine.svg

Ergine

Rivea corymbosa 1838.jpg

Rivea corymbosa

Seeds contain ergine, lysergol, and turbicoryn; lysergic acid alkaloids up to 0.03%[135] Has psychedelic properties.
Salvinorin A structure.svg

Salvinorin A

Salvia divinorum - Herba de Maria.jpg

Salvia divinorum

Salvinorin A, 0.89–3.87 mg/g, also Salvinorin B and Salvinorin C[136][unreliable source?]
Mesembrine.svg
Mesembrine
Sceletium tortuosum 01102003 Afrique du sud 2.JPG

Sceletium tortuosum

Kanna[137][138]
Baicalein.svg

Baicalein

Scutellaria pekinensis Yamatatsunamisou in Ibukiyama 2002-6-9.jpg

Scutellaria

Known commonly as 'skullcaps'. Baicalein is a positive allosteric modulator of GABAA receptor.[139]
Unknown Silene capensis (flowering).jpg

Silene capensis

Produces vivid dreams after smoking.[140]
Unknown Tagetes lemmonii flower.jpg

Tagetes lucida

Anethole, Chavicol, Coumarin, Estragole, Isorhamnetin, Methyleugenol, Quercitin
Ibogaine.svg

Ibogaine

Iboga.jpg

Tabernanthe iboga

Ibogaine in root bark. Produces psychedelic and a dissociative effects.[141][142]
Ibogaine.svg

Ibogaine

Tabernanthe orientalis

Ibogaine in root leaves. Produces psychedelic and a dissociative effects.[141][142]
Voacangine.svg Ibogaine.svg

Voacangine, Ibogaine

Crape Jasmine.jpg

Tabernaemontana divaricata

Is a psychedelic and a dissociative.[142]
Ibogaine.svg

Ibogaine

Tabernanthe pubescens

Is a psychedelic and a dissociative. Contains ibogaine and similar alkaloids.[141][142]
Ibogaine.svg

Ibogaine

Tabernaemontana divaricata by kadavoor.jpg

Tabernaemontana sp.

Is a psychedelic and a dissociative.[141][142]
Theobromine.svg

Theobromine

Matadecacao.jpg

Theobroma cacao

Cocoa or cacao bean, chocolate, native to the Americas
Ibogaine.svg

Ibogaine

Confederate Jasmine, Star Jasmine (Trachelospermum jasminoides).jpg

Trachelospermum jasminoides

Valerenic acid.svg

Valerenic acid

Valeriana officinalis - Niitvälja.jpg

Valeriana officinalis

Possible sedative and anxiolytic effects. Valerenic acid is GABAA receptor positive allosteric modulator,[143] and a 5-HT5A receptor partial agonist.[144]
Vincamine.svg

Vincamine

Vinca minor Nashville.jpg

Vinca minor

Vincamine.[145]
Voacangine.svg

Voacangine

Voacanga Africana 06.jpg

Voacanga africana

Voacangine is similar in structure to ibogaine. It inhibits AChE.[146][147]
Dendrobine.svg

Dendrobine[148]

Dendrobium nobile - flower view 01.jpg

Dendrobium nobile

Also contains phenanthrenes and dendrobine related alkaloids.
Genistein.svg Apigenin.svg

Possibly Genistein and Apigenin

Zornia latifolia Sm.jpg

Zornia latifolia

Zornia latifolia is sometimes combined with synthetic cannabis. It may produce similar effects to cannabis.[149][150] It is nicknamed Maconha brava because locals use it as a cannabis substitute.[citation needed]

See also

Notes

  1. Other psychoactive compounds without nitrogen atoms include kavalactones and salvinorins, known from kava and Salvia divinorum, respectively.

References

  1. Sayin, H. Umit (2016). "Psychoactive Plants Used during Religious Rituals". Neuropathology of Drug Addictions and Substance Misuse. Elsevier. pp. 17–28. doi:10.1016/b978-0-12-800634-4.00002-0. ISBN 9780128006344. 
  2. Kohek, Maja; Sánchez Avilés, Constanza; Romaní, Oriol; Bouso, José Carlos (2021). "Ancient psychoactive plants in a global village: The ritual use of cannabis in a self-managed community in Catalonia". International Journal of Drug Policy (Elsevier BV) 98: 103390. doi:10.1016/j.drugpo.2021.103390. ISSN 0955-3959. PMID 34340169. 
  3. "IJ PACHTER, DE ZACHARIAS, O RIBEIRO – The Journal of Organic Chemistry, 1959 -". Pubs.acs.org. http://pubs.acs.org/cgi-bin/abstract.cgi/joceah/1959/24/i09/f-pdf/f_jo01091a032.pdf?sessid=6006l3. 
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 "Trout's Notes on Some Other Succulents". http://www.entheogen.com/component/option,com_docman/task,doc_download/gid,6/Itemid,42/. 
  5. "Profiles of Psychedelic Drugs". paranoia.lycaeum.org. http://paranoia.lycaeum.org/psychedelics/tryptamines/dmt.info. 
  6. 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 6.29 6.30 6.31 6.32 6.33 6.34 6.35 6.36 6.37 6.38 6.39 6.40 6.41 6.42 6.43 6.44 6.45 6.46 6.47 6.48 6.49 6.50 6.51 6.52 6.53 6.54 6.55 6.56 6.57 6.58 6.59 6.60 6.61 6.62 6.63 6.64 6.65 6.66 6.67 6.68 6.69 6.70 6.71 6.72 6.73 6.74 6.75 6.76 6.77 6.78 6.79 6.80 6.81 6.82 6.83 6.84 6.85 6.86 6.87 Rätsch, Christian (25 April 2005). The Encyclopedia of Psychoactive Plants: Ethnopharmacology and Its Applications. Inner Traditions/Bear. ISBN 9781594776625. https://books.google.com/books?id=Rs5rAwAAQBAJ&q=Magnolia+virginiana+psychoactive&pg=PT2377. Retrieved 22 December 2017. 
  7. "Isolation, spectral characterization, molecular docking, and cytotoxic activity of alkaloids from Erythroxylum pungens O. E. Shulz". Phytochemistry 155: 12–18. November 2018. doi:10.1016/j.phytochem.2018.07.003. PMID 30056276. Bibcode2018PChem.155...12M. 
  8. 8.0 8.1 8.2 8.3 Glasby, John Stephen (1991). Dictionary of Plants Containing Secondary Metabolites. CRC Press. p. 2. ISBN 978-0-85066-423-2. https://books.google.com/books?id=te53VV5u8YMC&q=acacia+alkaloids&pg=RA1-PA2. 
  9. Nutritive value assessment of the tropical shrub legume Acacia angustissima: anti-nutritional compounds and in vitro digestibility. Personal Authors: McSweeney, C. S., Krause, D. O., Palmer, B., Gough, J., Conlan, L. L., Hegarty, M. P.Author Affiliation: CSIRO Livestock Industries, Long Pocket Laboratories, 120 Meiers Road, Indooroopilly, Qld 4068, Australia. Document Title: Animal Feed Science and Technology, 2005 (Vol. 121) (No. 1/2) 175–190
  10. "Maya Ethnobotanicals – Ayahuasca, Rainforest Plants, Folklore, Incenses, Art & Visions". http://www.maya-ethnobotanicals.com/product_info.phtml/herbid_340/category_ayahuasca. 
  11. 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 Black Panther. "Akacje". Herbarium.0–700.pl. http://herbarium.0-700.pl/Akacje.html. 
  12. "Lycaeum > Leda > Acacia auriculiformis". Leda.lycaeum.org. http://leda.lycaeum.org/?ID=15931. 
  13. 13.0 13.1 13.2 13.3 13.4 13.5 13.6 Hegnauer, R. (1996-07-30). Caesalpinioideae und Mimosoideae. Springer. ISBN 9783764351656. https://books.google.com/books?id=YpnboQBbw7EC&q=acacia+tryptamine&pg=PA336. Retrieved 14 January 2015. 
  14. 14.0 14.1 14.2 14.3 Australian Bush Food and Native Medicine Forum members. "Australian Bushfood (Bushtucker) and Native Medicine Forum". Bushfood.net. http://www.bushfood.net/viewtopic.php?p=3443. 
  15. "Entheology.org – Preserving Ancient Knowledge". Entheology.org. http://www.entheology.org/edoto/anmviewer.asp?a=47. 
  16. "Ask Dr. Shulgin Online September 26, 2001". Cognitiveliberty.org. http://www.cognitiveliberty.org/shulgin/adsarchive/acacia.htm. 
  17. "Dr Karl's Q&A forum". Abc.net.au. http://www.abc.net.au/science/k2/stn/q&a/notes/051027-9.htm. 
  18. "comp phyto". Users.lycaeum.org. http://users.lycaeum.org/~mulga/acacia/comphy.html. 
  19. "acacias and entheogens". Users.lycaeum.org. http://users.lycaeum.org/~mulga/acacia/entheo.html. 
  20. "Lycaeum > Leda > Acacia complanata". Users.lycaeum.org. http://leda.lycaeum.org/?ID=15796. 
  21. 21.00 21.01 21.02 21.03 21.04 21.05 21.06 21.07 21.08 21.09 21.10 21.11 21.12 21.13 Cite error: Invalid <ref> tag; no text was provided for refs named shaman
  22. NMR spectral assignments of a new chlorotryptamine alkaloid and its analogues from Acacia confusa Malcolm S. Buchanan, Anthony R. Carroll, David Pass, Ronald J. Quinn Magnetic Resonance in Chemistry Volume 45, Issue 4, pp. 359–361. John Wiley & Sons, Ltd.
  23. "Naturheilpraxis – Fachforum – Die Heilkraft der Akazien – Ein einführender Überblick". 5 January 2010. http://www.naturheilpraxis.de/exclusiv/nh-online/2005/nhp05/a_nh-ff02.html. 
  24. "Lycaeum > Leda > Acacia cultriformis". Leda.lycaeum.org. http://leda.lycaeum.org/?ID=15965. 
  25. 25.0 25.1 25.2 "Plant Choices – Phytochemeco Databases". Ars-grin.gov. http://www.ars-grin.gov/duke/plants.html. 
  26. 26.0 26.1 Vivid Interactive and Design. "Wattle Seed Workshop Proceedings". http://www.rirdc.gov.au/reports/AFT/03-024.pdf. 
  27. "www.bpi.da.gov.ph". http://www.bpi.da.gov.ph/Publications/mp/pdf/a/aroma.pdf. 
  28. "Acacia farnesiana". Hort.purdue.edu. http://www.hort.purdue.edu/newcrop/duke_energy/Acacia_farnesiana.html. 
  29. 29.0 29.1 29.2 Hegnauer, Robert (1994). Chemotaxonomie der Pflanzen. Springer. p. 500. ISBN 978-3-7643-2979-2. https://books.google.com/books?id=9fDv1RYqIRkC&q=chemotaxonomie+der+pflanzen. 
  30. "Lycaeum > Leda > Acacia floribunda". leda.lycaeum.org. http://leda.lycaeum.org/?ID=16001. 
  31. Voogelbreinder, S. "Garden Of Eden" 2009
  32. 32.0 32.1 32.2 "Lista över hallucinogena växter, svampar och djur". Wiki.magiskamolekyler.org. http://wiki.magiskamolekyler.org/index.php?title=Lista_%c3%b6ver_hallucinogena_v%c3%a4xter,_svampar_och_djur. 
  33. "Lycaeum > Leda > Acacia longifolia". leda.lycaeum.org. http://leda.lycaeum.org/?ID=15799. 
  34. extentech.sheetster.com[yes|permanent dead link|dead link}}]
  35. S. Voogelbreinder "Garden Of Eden" 2009
  36. "Lista över hallucinogena växter, svampar och djur – Magiska Molekylers Wiki". http://wiki.magiskamolekyler.org/Lista_%C3%B6ver_hallucinogena_v%C3%A4xter,_svampar_och_djur. 
  37. "obtusifolia phyto". Users.lycaeum.org. http://users.lycaeum.org/~mulga/acacia/obtuphy.html. 
  38. Plants Containing DMT (German)
  39. "Acacia campylacantha – Hortipedia". www.hortipedia.org. http://www.hortipedia.org/de/index.php?title=Acacia_campylacantha. 
  40. Pawar, RS; Grundel, E; Fardin-Kia, AR; Rader, JI (January 2014). "Determination of selected biogenic amines in Acacia rigidula plant materials and dietary supplements using LC-MS/MS methods.". Journal of Pharmaceutical and Biomedical Analysis 88: 457–66. doi:10.1016/j.jpba.2013.09.012. PMID 24176750. 
  41. "Chemistry of Acacias from South Texas". http://uvalde.tamu.edu/pdf/chemtdaf.pdf. 
  42. "Eins". Factorey.ch. http://www.factorey.ch/Eins.htm. 
  43. 43.0 43.1 43.2 43.3 43.4 43.5 Granier-Doyeux, Marcel (January 1, 1965). "Native hallucinogenic drugs piptadenias". United Nations Office on Drugs and Crime. http://www.unodc.org/unodc/en/bulletin/bulletin_1965-01-01_2_page006.html?print=yes. 
  44. 44.0 44.1 44.2 44.3 44.4 44.5 44.6 44.7 Dr. Duke's Phytochemical and Ethnobotanical Databases
  45. "Cultivo de Curupay, Cebil colorado (Anadenanthera colubrina) y usos, herbotecnia". Herbotecnia.com.ar. http://www.herbotecnia.com.ar/aut-curupay.html. 
  46. "Bufo alvarius – Jonathan Ott on Bufotenine". Erowid.org. http://www.erowid.org/archive/sonoran_desert_toad/ott.htm. 
  47. Dr. Duke's Phytochemical and Ethnobotanical Databases
  48. Stafford, Peter (2013-02-18). Psychedelics Encyclopedia. Ronin. ISBN 9781579511692. https://books.google.com/books?id=Ec5hNgYWHtkC&q=%22dmt+n+oxide%22&pg=RA2-PA313. Retrieved 14 January 2015. 
  49. Ott, J. (July–September 2001). "Pharmañopo-psychonautics: human intranasal, sublingual, intrarectal, pulmonary and oral pharmacology of bufotenine". Journal of Psychoactive Drugs 33 (3): 273–81. doi:10.1080/02791072.2001.10400574. PMID 11718320. 
  50. 50.0 50.1 "Erowid Online Books : "Ayahuasca: alkaloids, plants, and analogs" by Keeper of the Trout". Erowid.org. http://www.erowid.org/library/books_online/ayahuasca_apa/aya_sec3_part2_desmanthus.shtml. 
  51. Hegnauer, R. (1996-07-30). Google Book Search. Springer. ISBN 978-3-7643-5165-6. https://books.google.com/books?id=bUV8C6iLFkEC&q=%22Mimosa+somnians%22&pg=PA236. Retrieved 2008-05-08. 
  52. {{citation | mode = cs1 | title = Desmodium caudatum | work = Germplasm Resources Information Network (GRIN) | url = https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?311307 | publisher = [[Organization:Agricultural Research ServAgricultural Research Service (ARS), United States Department of Agriculture (USDA) | access-date = 2008-05-02 }}
  53. 53.0 53.1 53.2 "Trout's Notes on Desmodium". http://trout.yage.net/sc/D2_2004_Trout.pdf. 
  54. 54.0 54.1 54.2 54.3 54.4 54.5 54.6 54.7 54.8 "Erowid Psychoactive Vaults : Tryptamine FAQ". Erowid.org. http://www.erowid.org/psychoactives/faqs/faqs_tryptamine.shtml. 
  55. "Isolation and Identification of Putative Hallucinogenic Constituents from the Roots of Mimosa ophthalmocentra". Pharmaceutical Biology. 
  56. Hegnauer, R. (1996-07-30). Google Book Search. Springer. ISBN 978-3-7643-5165-6. https://books.google.com/books?id=bUV8C6iLFkEC&q=%22Mimosa+somnians%22&pg=PA236. Retrieved 2008-05-07. 
  57. "Ask Erowid : ID 75 : What is the DMT content of Mimosa hostilis rootbark?". Erowid.org. http://www.erowid.org/ask/ask.php?ID=75. 
  58. "UNODC Bulletin on Narcotics 1969". http://www.unodc.org/unodc/en/bulletin/bulletin_1969-01-01_4_page004.html. 
  59. Dart, Richard C. (2004). Medical Toxicology - Google Book Search. Lippincott Williams & Wilkins. ISBN 978-0-7817-2845-4. https://books.google.com/books?id=qDf3AO8nILoC&q=%22mucuna+pruriens%22+alkaloids&pg=PA1679. Retrieved 2008-03-15. 
  60. 60.0 60.1 60.2 60.3 60.4 "tryptamines: fungi". Bluezoo.org. http://bluezoo.org/tryptamines/plants.html. 
  61. 61.0 61.1 61.2 61.3 61.4 61.5 61.6 61.7 61.8 [1][yes|permanent dead link|dead link}}]
  62. Ott, Jonathan (1996). Pharmacotheon. Natural Products Company. p. 219. ISBN 9780961423483. https://archive.org/details/pharmacotheonent00ottj. 
  63. "Species Information". sun.ars-grin.gov. http://sun.ars-grin.gov:8080/npgspub/xsql/duke/plantdisp.xsql?taxon=1065. 
  64. 64.0 64.1 "5-MeO-DMT". Tryptamines.com. http://www.tryptamines.com/. 
  65. "Committee for veterinary medicinal products virola sebifera summary report". http://www.emea.europa.eu/pdfs/vet/mrls/060499en.pdf. 
  66. Peter R. Cheeke (1989). Toxicants of Plant Origin. CRC-Press. p. 169. ISBN 978-0-8493-6990-2. https://books.google.com/books?id=eASgQyXq8xMC&q=%22mimosa+hostilis%22+dimethyltryptamine&pg=PA169. Retrieved 2008-04-20. 
  67. "Erowid Arundo donax Vaults : Trout's Notes on Tryptamine Content of Arundo donax". Erowid.org. http://www.erowid.org/plants/arundo_donax/arundo_donax_info1.shtml. 
  68. 68.0 68.1 68.2 "DMT, Life and the Universe". Nepenthes.lycaeum.org. http://nepenthes.lycaeum.org/Plants/Phalaris/DMTLU.html. 
  69. 69.0 69.1 69.2 "Erowid Phalaris Vault : FAQ 2.01". Erowid.org. http://www.erowid.org/plants/phalaris/phalaris_faq.shtml. 
  70. Wassel, G. M.; El-Difrawy, S.M.; Saeed, A.A. (1985). "Alkaloids from the Rhizomes of Phragmites australis Cav.". Scientia Pharmaceutica 53: 169–170. 
  71. Rivier, Laurent; Lindgren, Jan-Erik (1972). ""Ayahuasca," the South American Hallucinogenic Drink: An Ethnobotanical and Chemical Investigation". Economic Botany 26 (2): 101–129. doi:10.1007/BF02860772. ISSN 0013-0001. https://www.jstor.org/stable/4253328. 
  72. "Psychotria – The Most Important Genera and Species from A to Z – The Encyclopedia of Psychoactive Plants: Ethnopharmacology and Its Applications". https://doctorlib.info/herbal/encyclopedia-psychoactive-plants-ethnopharmacology/93.html. 
  73. "Psychotria poeppigiana – Uragoga tomentosa". Discover Life. http://www.discoverlife.org/mp/20q?search=Psychotria+poeppigiana. 
  74. "Amazing Nature". Amazing-nature.com. http://www.amazing-nature.com/-i-36.html?osCsid=38ad41e62a454589a0afd2d17ae0fa40. 
  75. Servillo, L; Giovane, A; Balestrieri, ML; Cautela, D; Castaldo, D (Sep 2012). "N-methylated tryptamine derivatives in citrus genus plants: identification of N,N,N-trimethyltryptamine in bergamot". Journal of Agricultural and Food Chemistry 60 (37): 9512–8. doi:10.1021/jf302767e. PMID 22957740. 
  76. Servillo, L; Giovane, A; Balestrieri, ML; Casale, R; Cautela, D; Castaldo, D (May 2013). "Citrus genus plants contain N-methylated tryptamine derivatives and their 5-hydroxylated forms". Journal of Agricultural and Food Chemistry 61 (21): 5156–62. doi:10.1021/jf401448q. PMID 23682903. 
  77. Santos, Ana Paula; Moreno, Paulo Roberto Hrihorowitsch (Jun 2004). "Pilocarpus spp.: A survey of its chemical constituents and biologicalactivities". Brazilian Journal of Pharmaceutical Sciences 40 (2): 116–137. doi:10.1590/S1516-93322004000200002. 
  78. 78.0 78.1 78.2 "Citrus Growers Manufacture Huge Amounts of DMT". https://the-nexian.me/home/knowledge/112-citrus-growers-manufacture-huge-amounts-of-dmt. 
  79. 79.0 79.1 79.2 79.3 79.4 79.5 "Citrus Genus Plants Contain N-Methylated Tryptamine Derivatives and Their 5-Hydroxylated Forms". https://www.researchgate.net/publication/236917343. 
  80. 80.0 80.1 80.2 "CitrusGenus Plants Contain N‑Methylated Tryptamine Derivativesand Their 5‑Hydroxylated Forms". http://diyhpl.us/~nmz787/pdf/Citrus_Genus_Plants_Contain_N-Methylated_Tryptamine_Derivatives_and_Their_5-Hydroxylated_Forms.pdf. 
  81. Meyer, B. N.; Helfrich, J. S.; Nichols, D. E.; McLaughlin, J. L.; Davis, D. V.; Cooks, R. G. (1983). "Cactus Alkaloids. LIII. Coryphanthine and O-Methyl-Candicine, Two New Quaternary Alkaloids from Coryphantha greenwoodii". Journal of Natural Products 46 (5): 688–693. doi:10.1021/np50029a017. 
  82. N. Meyer, B; S. Helfrich, J; Nichols, David; L. McLaughlin, J; V. Davis, D; G. Cooks, R (1 July 2004). "Cactus Alkaloids. LIII. Coryphanthine and O-Methyl-Candicine, Two New Quaternary Alkaloids from Coryphantha greenwoodii". Journal of Natural Products 46 (5): 688–693. doi:10.1021/np50029a017. https://www.researchgate.net/publication/231715448. Retrieved 22 December 2017. 
  83. 83.0 83.1 83.2 83.3 83.4 83.5 "Descriptions of psychoactive Cacti.". Users.lycaeum.org. http://users.lycaeum.org/~iamklaus/botany.htm#. 
  84. "Cane Cholla (Cylindropuntia spinosior )". Desert-tropicals.com. http://www.desert-tropicals.com/Plants/Cactaceae/Opuntia_spinosior.html. 
  85. "Partial List of Alkaloids in Trichocereus Cacti". Thenook.org. http://www.thenook.org/archives/tek/alklist.htm. 
  86. a1b2c3.com. "Trichocereus spp. Information". A1b2c3.com. http://www.a1b2c3.com/drugs/var014.htm. 
  87. 87.0 87.1 87.2 "Partial List of Alkaloids in Trichocereus Cacti". Thennok.org. http://www.thenook.org/archives/tek/alklist.htm. 
  88. 88.0 88.1 88.2 88.3 Forbidden Fruit Archives
  89. "Echinopsis tacaquirensis ssp. taquimbalensis". Desert-tropicals.com. http://www.desert-tropicals.com/Plants/Cactaceae/Echinopsis_taquimb.html. 
  90. "Cardon Grande (Echinopsis terscheckii)". Desert-tropicals.com. http://www.desert-tropicals.com/Plants/Cactaceae/Echinopsis_terscheckii.html. 
  91. 91.0 91.1 91.2 "Erowid Cacti Vaults : Visionary Cactus Guide – Mescaline from Sawdust". Erowid.org. http://www.erowid.org/plants/cacti/cacti_guide/cacti_guide_lophopho.shtml. 
  92. "Archived copy". http://users.lycaeum.org/~iamklaus/opuntia.htm. 
  93. "From the behavioral pharmacology of beta-carbolines to seizures, anxiety, and memory". ScientificWorldJournal 7: 204–23. 2007. doi:10.1100/tsw.2007.48. PMID 17334612. 
  94. 94.00 94.01 94.02 94.03 94.04 94.05 94.06 94.07 94.08 94.09 94.10 94.11 94.12 94.13 94.14 94.15 94.16 94.17 94.18 94.19 94.20 94.21 94.22 94.23 94.24 94.25 94.26 94.27 94.28 94.29 94.30 94.31 94.32 94.33 94.34 94.35 94.36 94.37 94.38 94.39 94.40 94.41 94.42 94.43 94.44 94.45 94.46 94.47 94.48 94.49 94.50 94.51 94.52 94.53 "Cornell University Department of Animal Science". Ansci.cornell.edu. http://www.ansci.cornell.edu/plants/toxicagents/betacarbolines/bcarbfams.html. 
  95. Callaway, JC; Brito, GS; Neves, ES (2005). "Phytochemical analyses of Banisteriopsis caapi and Psychotria viridis". Journal of Psychoactive Drugs 37 (2): 145–150. doi:10.1080/02791072.2005.10399795. PMID 16149327. 
  96. Glasby, J. S. (2002-09-11). Directory Of Plants Containing Secondary Metabolites. CRC Press. ISBN 9780203489871. https://books.google.com/books?id=te53VV5u8YMC&q=erythrina+alkaloids&pg=RA1-PA124. Retrieved 14 January 2015. 
  97. "Chemical Information". sun.ars-grin.gov. http://sun.ars-grin.gov:8080/npgspub/xsql/duke/chemdisp.xsql. 
  98. 98.0 98.1 "Passion Flower". Drugs.com. https://www.drugs.com/npp/passion-flower.html. 
  99. "www.amazing-nature.com". http://www.amazing-nature.com/-i-43.html. 
  100. Ma, ZZ; Hano, Y; Nomura, T; Chen, YJ (April 2000). "Alkaloids and phenylpropanoids from Peganum nigellastrum". Phytochemistry 53 (8): 1075–8. doi:10.1016/S0031-9422(99)00440-9. PMID 10820833. Bibcode2000PChem..53.1075M. http://proxify.com/p/011010A1000110/687474703a2f2f7777772e736369656e63656469726563742e636f6d2f736369656e63653f5f6f623d41727469636c6555524c265f7564693d42365448372d343031484747542d3152265f757365723d3130265f72646f633d31265f666d743d265f6f7269673d736561726368265f736f72743d6426766965773d63265f616363743d43303030303530323231265f76657273696f6e3d31265f75726c56657273696f6e3d30265f7573657269643d3130266d64353d6631346535636632633161653335346164393536316232336262646533643236. Retrieved 2008-01-12. 
  101. "Antinociceptive effect of 7-hydroxymitragynine in mice: Discovery of an orally active opioid analgesic from the Thai medicinal herb Mitragyna speciosa". Life Sciences 74 (17): 2143–2155. March 2004. doi:10.1016/j.lfs.2003.09.054. PMID 14969718. 
  102. Menzies, John R.W; Paterson, Stewart J.; Duwiejua, Mahama; Corbett, Alistair D. (1998). "Opioid activity of alkaloids extracted from Picralima nitida (Fam. Apocynaceae)". European Journal of Pharmacology 350 (1): 101–108. doi:10.1016/s0014-2999(98)00232-5. PMID 9683021. 
  103. "Detection of pericine, a new CNS-active indole alkaloid from Picralima nitida cell suspension culture by opiate receptor binding studies". Planta Medica 46 (4): 210–4. December 1982. doi:10.1055/s-2007-971216. PMID 6298847. 
  104. Alkaloids: Biochemistry, Ecology, and Medicinal Applications. Springer. 30 June 1998. pp. 68–69. ISBN 978-0-306-45465-3. 
  105. "Pyrrolidinoindoline Alkaloids from Psychotria colorata1". Journal of Natural Products 61 (3): 392–6. March 1998. doi:10.1021/np9701642. PMID 9548883. 
  106. "Antinociceptive profile of hodgkinsine". Planta Medica 66 (8): 770–2. December 2000. doi:10.1055/s-2000-9604. PMID 11199142. 
  107. Mitaine, A. C.; Mesbah, K; Richard, B; Petermann, C; Arrazola, S; Moretti, C; Zèches-Hanrot, M; Men-Olivier, L. L. (1996). "Alkaloids from Aspidosperma species from Bolivia". Planta Medica 62 (5): 458–61. doi:10.1055/s-2006-957939. PMID 17252481. 
  108. Voigt, V; Laug, L; Zebisch, K; Thondorf, I; Markwardt, F; Brandsch, M (2013). "Transport of the areca nut alkaloid arecaidine by the human proton-coupled amino acid transporter 1 (hPAT1)". The Journal of Pharmacy and Pharmacology 65 (4): 582–90. doi:10.1111/jphp.12006. PMID 23488788. 
  109. Johnston, G. A. R.; Krogsgaard-Larsen, P.; Stephanson, A. (1975). "Betel nut constituents as inhibitors of γ-aminobutyric acid uptake". Nature 258 (5536): 627–628. doi:10.1038/258627a0. ISSN 0028-0836. PMID 1207742. Bibcode1975Natur.258..627J. https://ui.adsabs.harvard.edu/abs/1975Natur.258..627J/abstract. 
  110. "Arecoline M1 receptor activation is a requirement for arecoline analgesia". Il Farmaco 56 (5–7): 383–5. 2001. doi:10.1016/S0014-827X(01)01091-6. PMID 11482763. 
  111. Halpern, J.H. (2004). "Hallucinogens and dissociative agents naturally growing in the United States". Pharmacology & Therapeutics 102 (2): 131–138. doi:10.1016/j.pharmthera.2004.03.003. PMID 15163594. "Although LSD does not occur in nature, a close analogue, lysergic acid amide (LSA, ‘‘ergine’’) is found in the seeds of Argyreia nervosa (Hawaiian baby woodrose)". 
  112. Olsen, Richard W. (2000-04-25). "Absinthe and γ-aminobutyric acid receptors". Proceedings of the National Academy of Sciences of the United States of America 97 (9): 4417–4418. doi:10.1073/pnas.97.9.4417. ISSN 0027-8424. PMID 10781032. Bibcode2000PNAS...97.4417O. 
  113. 113.0 113.1 113.2 Denise Otsuka, Rafaela; Otsuka, Rafaela Denise; Lago, Joao Henrique Ghilardi; Rossi, Lucia; Galduroz, Jose Carlos Fernandes; Rodrigues, Eliana (2010). "Psychoactive Plants Described in a Brazilian Literary Work and their Chemical Compounds". Central Nervous System Agents in Medicinal Chemistry 10 (3): 218–237. doi:10.2174/1871524911006030218. PMID 20557283. https://www.academia.edu/1103613. 
  114. 114.0 114.1 114.2 Kennedy, David O. (2014). "The Deliriants – The Nightshade (Solanaceae) Family". Plants and the Human Brain. New York City: Oxford University Press. pp. 131–137. ISBN 9780199914012. https://books.google.com/books?id=YUNDAgAAQBAJ&pg=PA131. 
  115. "lucid dreams". https://dreamifiel.com/blog/lucid-dreams/. 
  116. Sałaga, Maciej; Fichna, Jakub; Socała, Katarzyna; Nieoczym, Dorota; Pieróg, Mateusz; Zielińska, Marta; Kowalczuk, Anna; Wlaź, Piotr (2016). "Neuropharmacological characterization of the oneirogenic Mexican plant Calea zacatechichi aqueous extract in mice". Metabolic Brain Disease 31 (3): 631–641. doi:10.1007/s11011-016-9794-1. ISSN 0885-7490. PMID 26821073. 
  117. Al Zarouni, Yousif (2015). The Effects of Khat (Catha Edulis) (First ed.). London: Yousif Al Zarouni. pp. 5. ISBN 978-1-326-24867-3. 
  118. "Protected Blog". Sliceoftheday. http://sliceoftheday.wordpress.com/2007/05/13/madagascar-periwinkle-catharanthus-roseus/. [|permanent dead link|dead link}}]
  119. Silvarolla, Maria B.; Mazzafera, Paulo; Fazuoli, Luiz C. (2004). "Plant biochemistry: A naturally decaffeinated arabica coffee". Nature 429 (6994): 826. doi:10.1038/429826a. PMID 15215853. Bibcode2004Natur.429..826S. 
  120. "Atropine". The American Society of Health-System Pharmacists. https://www.drugs.com/monograph/atropine.html. 
  121. Osbourn, Anne E.; Lanzotti, Virginia (2009). Plant-derived Natural Products: Synthesis, Function, and Application. Springer Science & Business Media. p. 5. ISBN 9780387854984. https://books.google.com/books?id=Y8SpVXEng4QC&pg=PA6. 
  122. Fatur, Karsten (7 January 2021). "Peculiar plants and fantastic fungi: An ethnobotanical study of the use of hallucinogenic plants and mushrooms in Slovenia". PLOS ONE 16 (1): e0245022. doi:10.1371/journal.pone.0245022. PMID 33412556. Bibcode2021PLoSO..1645022F. 
  123. Dallanoce, Clelia; Frigerio, Fabio; Martelli, Giuliana; Grazioso, Giovanni; Matera, Carlo; Pomè, Diego Yuri et al. (2010). "Novel tricyclic Δ2-isoxazoline and 3-oxo-2-methyl-isoxazolidine derivatives: Synthesis and binding affinity at neuronal nicotinic acetylcholine receptor subtypes". Bioorganic & Medicinal Chemistry 18 (12): 4498–4508. doi:10.1016/j.bmc.2010.04.065. ISSN 0968-0896. PMID 20478710. 
  124. Schultes, Richard Evans, Iconography of New World Plant Hallucinogens. p. 101
  125. Rovinskiĭ VI (Sep 1989). "A case of hallucinogen-like action of glaucine. (Russian)". Klinicheskaia Meditsina (Mosk) 67 (9): 107–8. PMID 2586025. 
  126. "Erowid Sinicuichi Vault : FAQ (heimia salicifolia Frequently Asked Questions)". Erowid.org. http://www.erowid.org/plants/sinicuichi/sinicuichi_faq.shtml. 
  127. "Trichterwinde (Ipomoea violacea) im GIFTPFLANZEN.COMpendium". Giftpflanzen.com. http://www.giftpflanzen.com/ipomoea_violacea.html. 
  128. Mangathayaru, K; Thirumurugan, D; Patel, PS; Pratap, DV.V; David, DJ; Karthikeyan, J (2006). "Isolation and identification of nicotine from leucas aspera (willd) link". Indian Journal of Pharmaceutical Sciences 68 (1): 88. doi:10.4103/0250-474X.22972. ISSN 0250-474X. 
  129. Hunter, E.; Stander, M.; Kossmann, J.; Chakraborty, S.; Prince, S.; Peters, S.; Loedolff, Bianke (2020-11-10). "Toward the identification of a phytocannabinoid-like compound in the flowers of a South African medicinal plant (Leonotis leonurus)". BMC Research Notes 13 (1): 522. doi:10.1186/s13104-020-05372-z. ISSN 1756-0500. PMID 33172494. 
  130. Eastlack, Steven C.; Cornett, Elyse M.; Kaye, Alan D. (2020). "Kratom—Pharmacology, Clinical Implications, and Outlook: A Comprehensive Review". Pain and Therapy 9 (1): 55–69. doi:10.1007/s40122-020-00151-x. ISSN 2193-8237. PMID 31994019. 
  131. Seligman, Sian (2023-01-13). "Blue Lotus Flower: Smoking, Tea & More" (in en-US). https://doubleblindmag.com/blue-lotus/. 
  132. "Opium definition". Drugs.com. https://www.drugs.com/dict/opium.html. 
  133. Pittler MH, Ernst E (2003). Pittler, Max H. ed. "Kava extract for treating anxiety". Cochrane Database of Systematic Reviews (1): CD003383. doi:10.1002/14651858.CD003383. PMID 12535473. PMC 6999799. http://www.cochrane.org/CD003383/DEPRESSN_kava-extract-for-treating-anxiety. 
  134. Baker, Jonathan D. (2011-06-01). "Tradition and toxicity: evidential cultures in the kava safety debate". Social Studies of Science 41 (3): 361–384. doi:10.1177/0306312710395341. ISSN 0306-3127. PMID 21879526. 
  135. "Ololiuqui (Rivea corymbosa) im GIFTPFLANZEN.COMpendium". Giftpflanzen.com. http://www.giftpflanzen.com/rivea_corymbosa.html. 
  136. "Salvia divinorum Clones". Sagewisdom.org. http://www.sagewisdom.org/clones.html. [|permanent dead link|dead link}}]
  137. Coetzee, Dirk D.; López, Víctor; Smith, Carine (2016-01-11). "High-mesembrine Sceletium extract (Trimesemine™) is a monoamine releasing agent, rather than only a selective serotonin reuptake inhibitor" (in en). Journal of Ethnopharmacology 177: 111–116. doi:10.1016/j.jep.2015.11.034. ISSN 0378-8741. PMID 26615766. https://www.sciencedirect.com/science/article/pii/S0378874115302348. 
  138. Manganyi, Madira Coutlyne; Bezuidenhout, Cornelius Carlos; Regnier, Thierry; Ateba, Collins Njie (2021-04-28). "A Chewable Cure "Kanna": Biological and Pharmaceutical Properties of Sceletium tortuosum". Molecules (Basel, Switzerland) 26 (9): 2557. doi:10.3390/molecules26092557. ISSN 1420-3049. PMID 33924742. 
  139. "Interaction of flavones from the roots of Scutellaria baicalensis with the benzodiazepine site". Planta Med. 66 (1): 91–3. 2000. doi:10.1055/s-0029-1243121. PMID 10705749. 
  140. J. F. Sobiecki (2008). "A review of plants used in divination in southern Africa and their psychoactive effects". Southern African Humanities 20: 333–351. 
  141. 141.0 141.1 141.2 141.3 "Erowid Online Books : "TIHKAL" – #25 IBOGAINE". Erowid.org. http://www.erowid.org/library/books_online/tihkal/tihkal25.shtml. 
  142. 142.0 142.1 142.2 142.3 142.4 "Quantification of Anti-Addictive Alkaloids Ibogaine and Voacangine in In Vivo- and In Vitro-Grown Plants of Two Mexican Tabernaemontana Species". Chemistry & Biodiversity 13 (12): 1730–1737. December 2016. doi:10.1002/cbdv.201600146. PMID 27448833. 
  143. "Identification of the putative binding pocket of valerenic acid on GABAA receptors using docking studies and site-directed mutagenesis". Br. J. Pharmacol. 172 (22): 5403–13. 2015. doi:10.1111/bph.13329. PMID 26375408. 
  144. Dietz, B.; Mahady, G.; Pauli, G.; Farnsworth, N. (2005). "Valerian extract and valerenic acid are partial agonists of the 5-HT receptor in vitro". Molecular Brain Research 138 (2): 191–197. doi:10.1016/j.molbrainres.2005.04.009. PMID 15921820. 
  145. Khanavi, M.; Pourmoslemi, S.; Farahanikia, B.; Hadjiakhoondi, A.; Ostad, S. N. (2010). "Cytotoxicity ofVinca minor". Pharmaceutical Biology 48 (1): 96–100. doi:10.3109/13880200903046187. PMID 20645762. 
  146. "Two fast screening methods (GC-MS and TLC-ChEI assay) for rapid evaluation of potential anticholinesterasic indole alkaloids in complex mixtures". Annals of the Brazilian Academy of Sciences 80 (3): 419–426. 2008. doi:10.1590/s0001-37652008000300003. ISSN 0001-3765. PMID 18797794. https://www.scielo.br/pdf/aabc/v80n3/a03v80n3.pdf. 
  147. "Indole alkaloids from Tabernaemontana australis (Muell. Arg) Miers that inhibit acetylcholinesterase enzyme". Bioorganic & Medicinal Chemistry 13 (12): 4092–5. June 2005. doi:10.1016/j.bmc.2005.03.045. PMID 15911323. 
  148. Duke, James A. (2017-10-24). Handbook of Phytochemical Constituent Grass, Herbs and Other Economic Plants: Herbal Reference Library (2 ed.). New York: Routledge. ISBN 978-0-203-75262-3. 
  149. Cornara, L.; Fortuna-Perez, A. P.; Bruni, I.; Salis, A.; Damonte, G.; Borghesi, B.; Clericuzio, M. (2018-09-01). "Zornia latifolia: a smart drug being adulterated by Stylosanthes guianensis" (in en). International Journal of Legal Medicine 132 (5): 1321–1331. doi:10.1007/s00414-018-1774-z. ISSN 1437-1596. PMID 29362872. 
  150. Fattore, Liana; Fratta, Walter (2011). "Beyond THC: The New Generation of Cannabinoid Designer Drugs". Frontiers in Behavioral Neuroscience 5: 60. doi:10.3389/fnbeh.2011.00060. ISSN 1662-5153. PMID 22007163. 

Bibliography

  • Al Zarouni, Yousif (2015). The Effects of Khat (Catha Edulis). London: Yousif Al Zarouni. 

External links