Chemistry:Anethole

From HandWiki
Anethole
Skeletal formula of anethole
Ball-and-stick model of the anethole molecule
Names
Preferred IUPAC name
1-Methoxy-4-[(E)-prop-1-enyl]benzene[1]
Other names
(E)-1-Methoxy-4-(prop-1-en-1-yl)benzene
(E)-1-Methoxy-4-(1-propenyl)benzene
para-Methoxyphenylpropene
p-Propenylanisole
Isoestragole
trans-1-Methoxy-4-(prop-1-enyl)benzene
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
KEGG
UNII
Properties
C10H12O
Molar mass 148.205 g/mol
Density 0.998 g/cm3
Melting point 20 to 21 °C (68 to 70 °F; 293 to 294 K)
Boiling point 234 °C (453 °F; 507 K)
81 °C (178 °F; 354 K) at 2 mmHg
−9.60×10−5 cm3/mol
Hazards
Safety data sheet External MSDS
Related compounds
Related compounds
anisole
estragole
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

Anethole (also known as anise camphor)[2] is an organic compound that is widely used as a flavoring substance. It is a derivative of the aromatic compound allylbenzene and occurs widely in plants in essential oils. It is in the class of phenylpropanoid organic compounds. It contributes a large component of the odor and flavor of anise and fennel (both in the botanical family Apiaceae), anise myrtle (Myrtaceae), liquorice (Fabaceae), magnolia blossoms, and star anise (Schisandraceae). Closely related to anethole is its isomer estragole, which is abundant in tarragon (Asteraceae) and basil (Lamiaceae), and has a flavor reminiscent of anise. It is a colorless, fragrant, mildly volatile liquid.[clarification needed][3] Anethole is only slightly soluble in water but exhibits high solubility in ethanol. This trait causes certain anise-flavored liqueurs to become opaque when diluted with water; this is called the ouzo effect.

Structure and production

Anethole is an aromatic, unsaturated ether related to lignols. It exists as both cistrans isomers (see also EZ notation), involving the double bond outside the ring. The more abundant isomer, and the one preferred for use, is the trans or E isomer.[4]

Like related compounds, anethole is poorly soluble in water. Historically, this property was used to detect adulteration in samples.[5]

Most anethole is obtained from turpentine-like extracts from trees.[3][6] Of only minor commercial significance, anethole can also be isolated from essential oils.[7][8][9]

Essential oil World production Trans-anethole
Anise 8 tonnes (1999) 95%
Star anise 400 tonnes (1999), mostly from China 87%
Fennel 25 tonnes (1999), mostly from Spain 70%

Currently Banwari Chemicals Pvt Ltd situated in Bhiwadi, Rajasthan, India is the leading manufacturer of anethole. It is prepared commercially from 4-methoxypropiophenone,[4][10] which is prepared from anisole.[3]

Uses

Flavoring

Anethole is distinctly sweet, measuring 13 times sweeter than sugar. It is perceived as being pleasant to the taste even at higher concentrations. It is used in alcoholic drinks ouzo, rakı, anisette and absinthe, among others. It is also used in seasoning and confectionery applications, such as German Lebkuchen, oral hygiene products, and in small quantities in natural berry flavors.[8]

Precursor to other compounds

Because they metabolize anethole into several aromatic chemical compounds, some bacteria are candidates for use in commercial bioconversion of anethole to more valuable materials.[11] Bacterial strains capable of using trans-anethole as the sole carbon source include JYR-1 (Pseudomonas putida)[12] and TA13 (Arthrobacter aurescens).[11]

Research

Antimicrobial and antifungal activity

Anethole has potent antimicrobial properties, against bacteria, yeasts, and fungi.[13] Reported antibacterial properties include both bacteriostatic and bactericidal action against Salmonella enterica[14] but not when used against Salmonella via a fumigation method.[15] Antifungal activity includes increasing the effectiveness of some other phytochemicals (such as polygodial) against Saccharomyces cerevisiae and Candida albicans;[16]

In vitro, anethole has antihelmintic action on eggs and larvae of the sheep gastrointestinal nematode Haemonchus contortus.[17] Anethole also has nematicidal activity against the plant nematode Meloidogyne javanica in vitro and in pots of cucumber seedlings.[18]

Insecticidal activity

Anethole also is a promising insecticide. Several essential oils consisting mostly of anethole have insecticidal action against larvae of the mosquito Ochlerotatus caspius[19] and Aedes aegypti.[20][21] In a similar manner, anethole itself is effective against the fungus gnat Lycoriella ingenua (Sciaridae)[22] and the mold mite Tyrophagus putrescentiae.[23] Against the mite, anethole is a slightly more effective pesticide than DEET, but anisaldehyde, a related natural compound that occurs with anethole in many essential oils, is 14 times more effective.[23] The insecticidal action of anethole is greater as a fumigant than as a contact agent. trans-Anethole is highly effective as a fumigant against the cockroach Blattella germanica[24] and against adults of the weevils Sitophilus oryzae, Callosobruchus chinensis and beetle Lasioderma serricorne.[25]

As well as an insect pesticide, anethole is an effective insect repellent against mosquitos.[26]

Ouzo effect

Diluting absinthe with water produces a spontaneous microemulsion (ouzo effect)

Anethole is responsible for the "ouzo effect" (also "louche effect"), the spontaneous formation of a microemulsion[27][28] that gives many alcoholic beverages containing anethole and water their cloudy appearance.[29] Such a spontaneous microemulsion has many potential commercial applications in the food and pharmaceutical industries.[30]

Precursor to illicit drugs

Anethole is an inexpensive chemical precursor for paramethoxyamphetamine (PMA),[31] and is used in its clandestine manufacture.[32] Anethole is present in the essential oil from guarana, which has psychoactive effects typically attributed to its caffeine content. The absence of PMA or any other known psychoactive derivative of anethole in human urine after ingestion of guarana leads to the conclusion that any psychoactive effect of guarana is not due to aminated anethole metabolites.[33]

Anethole is also present in absinthe, a liquor with a reputation for psychoactive effects; these effects, however, are attributed to ethanol.[34] (See also thujone, anethole dithione (ADT), and anethole trithione (ATT).)

Estrogen and prolactin

Anethole has estrogenic activity.[35][36][37] It has been found to significantly increase uterine weight in immature female rats.[38]

Fennel, which contains anethole, has been found to have a galactagogue effect in animals. Anethole bears a structural resemblance to catecholamines like dopamine and may displace dopamine from its receptors and thereby disinhibit prolactin secretion, which in turn may be responsible for the galactagogue effects.[39]

Safety

In the USA, anethole is generally recognized as safe (GRAS). After a hiatus due to safety concerns, anethole was reaffirmed by Flavor and Extract Manufacturers Association (FEMA) as GRAS.[40] The concerns related to liver toxicity and possible carcinogenic activity reported in rats.[41] Anethole is associated with a slight increase in liver cancer in rats,[41] although the evidence is scant and generally regarded as evidence that anethole is not a carcinogen.[41][42] An evaluation of anethole by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) found its notable pharmacologic properties to be reduction in motor activity, lowering of body temperature, and hypnotic, analgesic, and anticonvulsant effects.[43] A subsequent evaluation by JECFA found some reason for concern regarding carcinogenicity, but there is currently insufficient data to support this.[44] At this time, the JECFA summary of these evaluations is that anethole has "no safety concern at current levels of intake when used as a flavoring agent".[45]

In large quantities, anethole is slightly toxic and may act as an irritant.[46]

History

That an oil could be extracted from anise and fennel had been known since the Renaissance by the German alchemist Hieronymus Brunschwig (c. 1450 – c. 1512), the German botanist Adam Lonicer (1528–1586), and the German physician Valerius Cordus (1515–1544), among others.[47] Anethole was first investigated chemically by the Swiss chemist Nicolas-Théodore de Saussure in 1820.[48] In 1832, the French chemist Jean Baptiste Dumas determined that the crystallizable components of anise oil and fennel oil were identical, and he determined anethole's empirical formula.[49] In 1845, the French chemist Charles Gerhardt coined the term anethol – from the Latin anethum (anise) + oleum (oil) – for the fundamental compound from which a family of related compounds was derived.[50] Although the German chemist Emil Erlenmeyer proposed the correct molecular structure for anethole in 1866,[51] it was not until 1872, that the structure was accepted as correct.[47]

See also

References

  1. "Anethole". https://pubchem.ncbi.nlm.nih.gov/compound/637563#section=IUPAC-Name&fullscreen=true. 
  2. "Anise camphor definition and meaning | Collins English Dictionary". https://www.collinsdictionary.com/us/dictionary/english/anise-camphor. 
  3. 3.0 3.1 3.2 Fahlbusch, Karl-Georg; Hammerschmidt, Franz-Josef; Panten, Johannes; Pickenhagen, Wilhelm; Schatkowski, Dietmar; Bauer, Kurt; Garbe, Dorothea; Surburg, Horst. "Ullmann's Encyclopedia of Industrial Chemistry". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_141. 
  4. 4.0 4.1 Zhang, Hongwei; Lim, Candy Li-Fen; Zaki, Muhammad; Jaenicke, Stephan; Chuah, Gaik Khuan (2018). "A Dual-Functional Catalyst for Cascade Meerwein–Pondorf–Verley Reduction and Dehydration of 4′-Methoxypropiophenone to Anethole" (in en). ChemSusChem 11 (17): 3007–3017. doi:10.1002/cssc.201801340. ISSN 1864-564X. PMID 29927044. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201801340. 
  5. Waldbott, S. (1920). "Essential oils". Chemical Abstracts 14 (17): 3753–3755. https://books.google.com/books?id=isq2AAAAIAAJ&pg=PA3753. 
  6. Davis, Curry B., "Purification of anethole by crystallization", US patent 4902850, issued 1990-02-20
  7. Chopra, R. N.; Chopra, I. C.; Handa, K. L.; Kapur, L. D. (1958). Chopra's Indigenous Drugs of India (2nd ed.). Academic Publishers. pp. 178–179. ISBN 978-81-85086-80-4. https://books.google.com/books?id=2HyC4-GJ50YC&pg=PA178. 
  8. 8.0 8.1 Ashurst, Philip R. (1999). Food Flavorings. Springer. p. 460. ISBN 978-0-8342-1621-1. https://books.google.com/books?id=hrWuqmtwJiEC&q=anethole. [yes|permanent dead link|dead link}}]
  9. Bodsgard, B. R.; Lien, N. R.; Waulters, Q. T. (2016). "Liquid CO2 Extraction and NMR Characterization of Anethole from Fennel Seed: A General Chemistry Laboratory". Journal of Chemical Education 93 (2): 397–400. doi:10.1021/acs.jchemed.5b00689. Bibcode2016JChEd..93..397B. 
  10. Zhang, Hongwei; Quek, Zhan Jiang; Jaenicke, Stephan; Chuah, Gaik-Khuan (2021-08-01). "Hydrophobicity and co-solvent effects on Meerwein-Ponndorf-Verley reduction/dehydration cascade reactions over Zr-zeolite catalysts" (in en). Journal of Catalysis 400: 50–61. doi:10.1016/j.jcat.2021.05.011. ISSN 0021-9517. https://www.sciencedirect.com/science/article/abs/pii/S0021951721001962. 
  11. 11.0 11.1 Shimoni, E; Baasov, T.; Ravid, U.; Shoham, Y. (2002). "The trans-anethole degradation pathway in an Arthrobacter sp.". Journal of Biological Chemistry 277 (14): 11866–11872. doi:10.1074/jbc.M109593200. PMID 11805095. 
  12. Ryu, J.; Seo, J.; Lee, Y.; Lim, Y.; Ahn, J. H.; Hur, H. G. (2005). "Identification of syn- and anti-anethole-2,3-epoxides in the metabolism of trans-anethole by the newly isolated bacterium Pseudomonas putida JYR-1". Journal of Agricultural and Food Chemistry 53 (15): 5954–5958. doi:10.1021/jf040445x. PMID 16028980. 
  13. De, M.; De, A. K.; Sen, P.; Banerjee, A. B. (2002). "Antimicrobial properties of star anise (Illicium verum Hook. f.)". Phytotherapy Research 16 (1): 94–95. doi:10.1002/ptr.989. PMID 11807977. 
  14. Kubo, I.; Fujita, K. (2001). "Naturally occurring anti-Salmonella agents". Journal of Agricultural and Food Chemistry 49 (12): 5750–5754. doi:10.1021/jf010728e. PMID 11743758. 
  15. Weissinger, W. R.; McWatters, K. H.; Beuchat, L. R. (April 2001). "Evaluation of volatile chemical treatments for lethality to Salmonella on alfalfa seeds and sprouts". Journal of Food Protection 64 (4): 442–450. doi:10.4315/0362-028X-64.4.442. PMID 11307877. 
  16. Fujita, K.; Fujita, T.; Kubo, I. (2007). "Anethole, a potential antimicrobial synergist, converts a fungistatic dodecanol to a fungicidal agent". Phytotherapy Research 21 (1): 47–51. doi:10.1002/ptr.2016. PMID 17078111. 
  17. Camurça-Vasconcelos, A. L.; Bevilaqua, C. M.; Morais, S. M.; Maciel, M. V.; Costa, C. T.; Macedo, I. T.; Oliveira, L. M.; Braga, R. R. et al. (2007). "Anthelmintic activity of Croton zehntneri and Lippia sidoides essential oils". Veterinary Parasitology 148 (3–4): 288–294. doi:10.1016/j.vetpar.2007.06.012. PMID 17629623. 
  18. Oka, Y.; Nacar, S.; Putievsky, E.; Ravid, U.; Yaniv, Z.; Spiegel, Y. (2000). "Nematicidal activity of essential oils and their components against the root-knot nematode". Phytopathology 90 (7): 710–715. doi:10.1094/PHYTO.2000.90.7.710. PMID 18944489. 
  19. Knio, K. M.; Usta, J.; Dagher, S.; Zournajian, H.; Kreydiyyeh, S. (2008). "Larvicidal activity of essential oils extracted from commonly used herbs in Lebanon against the seaside mosquito, Ochlerotatus caspius". Bioresource Technology 99 (4): 763–768. doi:10.1016/j.biortech.2007.01.026. PMID 17368893. Bibcode2008BiTec..99..763K. 
  20. Cheng, S. S.; Liu, J. Y.; Tsai, K. H.; Chen, W. J.; Chang, S. T. (2004). "Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances". Journal of Agricultural and Food Chemistry 52 (14): 4395–4400. doi:10.1021/jf0497152. PMID 15237942. 
  21. Morais, S. M.; Cavalcanti, E. S.; Bertini, L. M.; Oliveira, C. L.; Rodrigues, J. R.; Cardoso, J. H. (2006). "Larvicidal activity of essential oils from Brazilian Croton species against Aedes aegypti L.". Journal of the American Mosquito Control Association 22 (1): 161–164. doi:10.2987/8756-971X(2006)22[161:LAOEOF2.0.CO;2]. PMID 16646345. 
  22. Park, I. K.; Choi, K. S.; Kim, D. H.; Choi, I. H.; Kim, L. S.; Bak, W. C.; Choi, J. W.; Shin, S. C. (2006). "Fumigant activity of plant essential oils and components from horseradish (Armoracia rusticana), anise (Pimpinella anisum) and garlic (Allium sativum) oils against Lycoriella ingenua (Diptera: Sciaridae)". Pest Management Science 62 (8): 723–728. doi:10.1002/ps.1228. PMID 16786497. 
  23. 23.0 23.1 Lee, H. S. (2005). "Food protective effect of acaricidal components isolated from anise seeds against the stored food mite, Tyrophagus putrescentiae (Schrank)". Journal of Food Protection 68 (6): 1208–1210. doi:10.4315/0362-028X-68.6.1208. PMID 15954709. 
  24. Chang, K. S.; Ahn, Y. J. (2002). "Fumigant activity of (E)-anethole identified in Illicium verum fruit against Blattella germanica". Pest Management Science 58 (2): 161–166. doi:10.1002/ps.435. PMID 11852640. 
  25. Kim, D. H.; Ahn, Y. J. (2001). "Contact and fumigant activities of constituents of Foeniculum vulgare fruit against three coleopteran stored-product insects". Pest Management Science 57 (3): 301–306. doi:10.1002/ps.274. PMID 11455661. 
  26. Padilha de Paula, J.; Gomes-Carneiro, M. R.; Paumgartten, F. J. (2003). "Chemical composition, toxicity and mosquito repellency of Ocimum selloi oil". Journal of Ethnopharmacology 88 (2–3): 253–260. doi:10.1016/s0378-8741(03)00233-2. PMID 12963152. 
  27. Sitnikova, Natalia L.; Sprik, Rudolf; Wegdam, Gerard; Eiser, Erika (2005). "Spontaneously formed trans-anethol/water/alcohol emulsions: Mechanism of formation and stability". Langmuir 21 (16): 7083–7089. doi:10.1021/la046816l. PMID 16042427. http://www.science.uva.nl/~sprik/personal/pdf/05/la046816l.pdf. Retrieved 2009-03-15. 
  28. Carteau, David; Bassani, Dario; Pianet, Isabelle (2008). "The "Ouzo effect": Following the spontaneous emulsification of trans-anethole in water by NMR". Comptes Rendus Chimie 11 (4–5): 493–498. doi:10.1016/j.crci.2007.11.003. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2007.11.003/. 
  29. Sánchez Domínguez, M.; Rodríguez Abreu, C. (2016). Nanocolloids: A Meeting Point for Scientists and Technologists. Elsevier Science. p. 369. ISBN 978-0-12-801758-6. https://books.google.com/books?id=ReXIBAAAQBAJ&pg=PA369. Retrieved 2018-08-02. "O/W and W/O nano-emulsions can also be formed without a surfactant by self-emulsification, using the so-called Ouzo effect. The major components of Ouzo (a Greek drink) are trans-anethole, ethanol, and water. Anethole is almost insoluble ..." 
  30. Spernath, A.; Aserin, A. (2006). "Microemulsions as carriers for drugs and nutraceuticals". Advances in Colloid and Interface Science 128–130: 47–64. doi:10.1016/j.cis.2006.11.016. PMID 17229398. 
  31. Waumans, D.; Bruneel, N.; Tytgat, J. (2003). "Anise oil as para-methoxyamphetamine (PMA) precursor". Forensic Science International 133 (1–2): 159–170. doi:10.1016/S0379-0738(03)00063-X. PMID 12742705. 
  32. Waumans, D.; Hermans, B.; Bruneel, N.; Tytgat, J. (2004). "A neolignan-type impurity arising from the peracid oxidation reaction of anethole in the surreptitious synthesis of 4-methoxyamphetamine (PMA)". Forensic Science International 143 (2–3): 133–139. doi:10.1016/j.forsciint.2004.02.033. PMID 15240033. 
  33. Benoni, H.; Dallakian, P.; Taraz, K. (1996). "Studies on the essential oil from guarana". Zeitschrift für Lebensmittel-Untersuchung und -Forschung 203 (1): 95–98. doi:10.1007/BF01267777. PMID 8765992. 
  34. Lachenmeier, D. W. (2008). "Thujon-Wirkungen von Absinth sind nur eine Legende—Toxikologie entlarvt Alkohol als eigentliche Absinthismus-Ursache" (in de). Medizinische Monatsschrift für Pharmazeuten 31 (3): 101–106. PMID 18429531. 
  35. Jordan, Virgil Craig (1986). Estrogen/Antiestrogen Action and Breast Cancer Therapy. University of Wisconsin Press. pp. 21–22. ISBN 978-0-299-10480-1. https://books.google.com/books?id=7WmLZfGXST0C&pg=PA21. 
  36. Howes, M.-J. R.; Houghton, P. J.; Barlow, D. J.; Pocock, V. J.; Milligan, S. R. (November 2002). "Assessment of estrogenic activity in some common essential oil constituents". The Journal of Pharmacy and Pharmacology 54 (11): 1521–1528. doi:10.1211/002235702216. ISSN 0022-3573. PMID 12495555. 
  37. Albert-Puleo, M. (December 1980). "Fennel and anise as estrogenic agents". Journal of Ethnopharmacology 2 (4): 337–344. doi:10.1016/s0378-8741(80)81015-4. ISSN 0378-8741. PMID 6999244. https://pubmed.ncbi.nlm.nih.gov/6999244/. 
  38. Tisserand, Robert; Young, Rodney (2013). Essential Oil Safety: A Guide for Health Care Professionals. Elsevier Health Sciences. p. 150. ISBN 978-0-7020-5434-1. https://books.google.com/books?id=DbEKAQAAQBAJ&pg=PA150. 
  39. Bone, Kerry; Mills, Simon Y. (2013). Principles and Practice of Phytotherapy. Modern Herbal Medicine. 2. Elsevier Health Sciences. p. 559. ISBN 978-0-443-06992-5. https://books.google.com/books?id=5V1QlqHazcwC&pg=PA559. 
  40. Newberne, P.; Smith, R. L.; Doull, J.; Goodman, J. I.; Munro, I. C.; Portoghese, P. S.; Wagner, B. M.; Weil, C. S. et al. (1999). "The FEMA GRAS assessment of trans-anethole used as a flavouring substance. Flavour and Extract Manufacturers' Association". Food and Chemical Toxicology 37 (7): 789–811. doi:10.1016/S0278-6915(99)00037-X. PMID 10496381. 
  41. 41.0 41.1 41.2 Newberne, P. M.; Carlton, W. W.; Brown, W. R. (1989). "Histopathological evaluation of proliferative liver lesions in rats fed trans-anethole in chronic studies". Food and Chemical Toxicology 27 (1): 21–26. doi:10.1016/0278-6915(89)90087-2. PMID 2467866. 
  42. Waddell, W. J. (2002). "Thresholds of carcinogenicity of flavors". Toxicological Sciences 68 (2): 275–279. doi:10.1093/toxsci/68.2.275. PMID 12151622. 
  43. Joint FAO/WHO Expert Committee on Food Additives. "trans-Anethole". International Program on Chemical Safety (IPCS). http://www.inchem.org/documents/jecfa/jecmono/v14je02.htm. 
  44. Joint FAO/WHO Expert Committee on Food Additives (1998). "trans-Anethole". International Program on Chemical Safety (IPCS). http://www.inchem.org/documents/jecfa/jecmono/v28je10.htm. 
  45. "Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives: trans-Anethole". International Program on Chemical Safety (IPCS). 2001-11-12. http://www.inchem.org/documents/jecfa/jeceval/jec_137.htm. 
  46. "Safety data for anethole". Physical & Theoretical Chemistry Laboratory Safety, Oxford University. http://msds.chem.ox.ac.uk/AN/anethole.html. 
  47. 47.0 47.1 See:
  48. De Saussure, N.-T. (1820). "Observations sur la combinaison de l'essence de citron avec l'acide muriatique, et sur quelques substances huileuses" (in fr). Annales de Chimie et de Physique. Série 2 13: 259–284. https://babel.hathitrust.org/cgi/pt?id=nyp.33433062741594;view=1up;seq=265.  See especially pp. 280–284.
  49. See:
  50. Gerhardt, Charles (1845). "Ueber die Identität des Dragonöls und des Anisöls" (in de). Journal für praktische Chemie 36: 267–276. doi:10.1002/prac.18450360159. https://babel.hathitrust.org/cgi/pt?id=njp.32101076785581;view=1up;seq=279. "Ich werde keinen neuen Namen für jede einzelne Art der folgenden physisch verschiedenen Arten annehmen. In meinem Werke bezeichne ich sie als Varietäten der Gattung „Anethol“.". 
  51. Erlenmeyer, Emil (1866). "Ueber die Constitution des Anisols (Anethols)" (in de). Zeitschrift für Chemie. 2nd Series 2: 472–474. https://books.google.com/books?id=6sEwAAAAYAAJ&pg=PA472. 

External links