Perrin number
In mathematics, the Perrin numbers are a doubly infinite constant-recursive integer sequence with characteristic equation x3 = x + 1. The Perrin numbers bear the same relationship to the Padovan sequence as the Lucas numbers do to the Fibonacci sequence.
Definition
The Perrin numbers are defined by the recurrence relation
- [math]\displaystyle{ \begin{align} P(0)&=3, \\ P(1)&=0, \\ P(2)&=2, \\ P(n)&=P(n-2) +P(n-3) \mbox{ for }n\gt 2, \end{align} }[/math]
and the reverse
- [math]\displaystyle{ P(n) =P(n+3) -P(n+1) \mbox{ for }n\lt 0. }[/math]
The first few terms in both directions are
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
P(n) | 3 | 0 | 2 | 3 | 2 | 5 | 5 | 7 | 10 | 12 | 17 | 22 | 29 | 39 | 51 | 68 | 90 | 119 | ...[1] |
P(-n) | ... | -1 | 1 | 2 | -3 | 4 | -2 | -1 | 5 | -7 | 6 | -1 | -6 | 12 | -13 | 7 | 5 | -18 | ...[2] |
Perrin numbers can be expressed as sums of the three initial terms
- [math]\displaystyle{ \begin{array}{c|c|c} n & P(n) & P(-n) \\ \hline 0 & P(0) & ... \\ 1 & P(1) & P(2) -P(0) \\ 2 & P(2) & -P(2) +P(1) +P(0) \\ 3 & P(1) +P(0) & P(2) -P(1) \\ 4 & P(2) +P(1) & P(1) -P(0) \\ 5 & P(2) +P(1) +P(0) & -P(2) +2P(0) \\ 6 & P(2) +2P(1) +P(0) & 2P(2) -P(1) -2P(0) \\ 7 & 2P(2) +2P(1) +P(0) & -2P(2) +2P(1) +P(0) \\ 8 & 2P(2) +3P(1) +2P(0) & P(2) -2P(1) +P(0) \end{array} }[/math]
The first fourteen prime Perrin numbers are
n | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 12 | 20 | 21 | 24 | 34 | 38 | 75 | ...[3] |
P(n) | 2 | 3 | 2 | 5 | 5 | 7 | 17 | 29 | 277 | 367 | 853 | 14197 | 43721 | 1442968193 | ...[4] |
History
The sequence was mentioned implicitly by Édouard Lucas in 1876,[5] and his ideas were further developed by Raoul Perrin in 1899.[6] The most extensive treatment was given by William Adams and Daniel Shanks in 1982,[7] with a sequel appearing four years later.[8]
Properties
The Perrin sequence also satisfies the recurrence relation [math]\displaystyle{ P(n) =P(n-1) +P(n-5). }[/math] Starting from this and the defining recurrence, one can create an infinite number of further relations, for example [math]\displaystyle{ P(n) =P(n-3) +P(n-4) +P(n-5). }[/math]
The generating function of the Perrin sequence is
- [math]\displaystyle{ \frac{3 -x^2}{1 -x^2 -x^3} =\sum_{n=0}^{\infty} P(n)\,x^n }[/math]
The sequence is related to sums of binomial coefficients by
- [math]\displaystyle{ P(n) =n \times \sum_{k =\lfloor (n +2)/3 \rfloor}^{\lfloor n /2 \rfloor}{k \choose n -2k} /k }[/math].[9]
Perrin numbers can be expressed in terms of partial sums
- [math]\displaystyle{ \begin{align} P(n+5) -2&=\sum_{k=0}^{n} P(k) \\ P(2n+3)&=\sum_{k=0}^{n} P(2k) \\ 5 -P(4-n)&=\sum_{k=0}^{n} P(-k) \\ 3 -P(1-2n)&=\sum_{k=0}^{n} P(-2k). \end{align} }[/math]
The Perrin numbers are obtained as integral powers n ≥ 0 of the matrix
- [math]\displaystyle{ \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{n} \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} P(n) \\ P(n+1) \\ P(n+2) \end{pmatrix}, }[/math]
and its inverse
- [math]\displaystyle{ \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{n} \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} P(-n) \\ P(1-n) \\ P(2-n) \end{pmatrix}. }[/math]
The Perrin analogue of the Simson identity for Fibonacci numbers is given by the determinant
- [math]\displaystyle{ \begin{vmatrix} P(n+2) & P(n+1) & P(n) \\ P(n+1) & P(n) & P(n-1) \\ P(n) & P(n-1) & P(n-2) \end{vmatrix} =-23. }[/math]
The number of different maximal independent sets in an n-vertex cycle graph is counted by the nth Perrin number for n > 2.[10]
Binet formula
The solution of the recurrence [math]\displaystyle{ P(n) =P(n-2) +P(n-3) }[/math] can be written in terms of the roots of characteristic equation [math]\displaystyle{ x^3 -x -1=0 }[/math]. If the three solutions are real root p (with approximate value 1.324718 and known as the plastic ratio) and complex conjugate roots q and r, the Perrin numbers can be computed with the Binet formula [math]\displaystyle{ P(n) = p^n + q^n + r^n, }[/math] which also holds for negative n.
The polar form is [math]\displaystyle{ P(n) =p^n +2\cos(n\,\theta) \sqrt{\vphantom{\mid}p^{-n}}, }[/math] with [math]\displaystyle{ \theta =\arccos(-\sqrt{p^3} /2). }[/math] Since [math]\displaystyle{ \lim_{n \to \infty}p^{-n} =0, }[/math] the formula reduces to either the first or the second term successively for large positive or negative n, and numbers with negative subscripts oscillate. Provided p is computed to sufficient precision, these formulas can be used to calculate Perrin numbers for large n.
Expanding the identity [math]\displaystyle{ P^{2}(n) =(p^n + q^n + r^n)^2 }[/math] gives the important index-doubling rule [math]\displaystyle{ P(2n) =P^{2}(n) -2P(-n), }[/math] by which the forward and reverse parts of the sequence are linked.
Perrin primality test
The Perrin sequence has the Fermat property: if p is prime, P(p) ≡ P(1) ≡ 0 (mod p). However, the converse is not true: some composite n may still divide P(n). A number with this property is called a Perrin pseudoprime.
The seventeen Perrin pseudoprimes below 109 are
- 271441, 904631, 16532714, 24658561, 27422714, 27664033, 46672291, 102690901, 130944133, 196075949, 214038533, 517697641, 545670533, 801123451, 855073301, 903136901, 970355431.[11]
The question of the existence of Perrin pseudoprimes was considered by Perrin himself, but none were known until Adams and Shanks (1982) discovered the smallest one, 271441 = 5212 (the number P(271441) has 33150 decimal digits).[12] Jon Grantham later proved that there are infinitely many Perrin pseudoprimes.[13]
Adams and Shanks noted that primes also satisfy the congruence P(−p) ≡ P(−1) ≡ −1 (mod p). Composites for which both properties hold are called restricted Perrin pseudoprimes. There are only nine such numbers below 109.[14]
While Perrin pseudoprimes are rare, they overlap with Fermat pseudoprimes. Of the above seventeen numbers, four are also base 2 Fermatians. In contrast, the Lucas pseudoprimes are anti-correlated. Presumably, combining the Perrin and Lucas tests would make a primality test as strong as the reliable BPSW test which has no known pseudoprimes – though at higher computational cost.
Pseudocode
The 1982 Adams and Shanks O(log n) Strong Perrin primality test.[15]
Two integer arrays u(3) and v(3) are initialized to the lowest terms of the Perrin sequence, with positive indices t = 0, 1, 2 in u( ) and negative indices t = 0,−1,−2 in v( ).
The main double-and-add loop, originally devised to run on an HP-41C pocket calculator, efficiently computes P(n) mod n and the reverse P(−n) mod n.[16]
The subscripts of the Perrin numbers are doubled using the identity P(2t) = P2(t) − 2P(−t). The resulting gaps between P(±2t) and P(±2t ± 2) are closed by applying the defining relation P(t) = P(t − 2) + P(t − 3).
Initial values LET u(0):= 3, u(1):= 0, u(2):= 2 LET v(0):= 3, v(1):=−1, v(2):= 1 INPUT integer n, the odd positive number to test SET integer h:= most significant bit of n FOR k:= h − 1 DOWNTO 0 Double the indices of the six Perrin numbers. FOR i = 0, 1, 2 temp:= u(i)^2 − 2v(i) (mod n) v(i):= v(i)^2 − 2u(i) (mod n) u(i):= temp ENDFOR Copy P(2t + 2) and P(−2t − 2) to the array ends and use in the IF statement below. u(3):= u(2) v(3):= v(2) Overwrite P(2t ± 2) with P(2t ± 1) temp:= u(2) − u(1) u(2):= u(0) + temp u(0):= temp Overwrite P(−2t ± 2) with P(−2t ± 1) temp:= v(0) − v(1) v(0):= v(2) + temp v(2):= temp IF n has bit k set THEN Increase the indices of both Perrin triples by 1. FOR i = 0, 1, 2 u(i):= u(i + 1) v(i):= v(i + 1) ENDFOR ENDIF ENDFOR Show the results PRINT u(0), u(1), u(2) PRINT v(2), v(1), v(0)
Successively P(n − 1), P(n), P(n + 1) and P(−n − 1), P(−n), P(−n + 1) (mod n).
If P(n) = 0 and P(−n) = −1 then n is a probable prime, that is: actually prime or a strong Perrin pseudoprime.
Adams and Shanks enhanced the test by defining "acceptable signatures" comprising all six residues.[17] An even stronger test also uses the Narayana-Lucas sister sequence,[18] with recurrence relation A(n) = A(n − 1) + A(n − 3) and initial values
u(0):= 3, u(1):= 1, u(2):= 1 v(0):= 3, v(1):= 0, v(2):=−2
The same doubling rule applies and the formulas for filling the gaps are
temp:= u(0) + u(1) u(0):= u(2) − temp u(2):= temp temp:= v(2) + v(1) v(2):= v(0) − temp v(0):= temp
Here, n is a probable prime if A(n) = 1 and A(−n) = 0.
Shanks et al. found no overlap between the odd pseudoprimes for the two sequences below 50∙109 and supposed that 2277740968903 = 1067179 ∙ 2134357 is the smallest composite number to pass both tests.[19]
Notes
- ↑ Sloane, N. J. A., ed. "Sequence A001608". OEIS Foundation. https://oeis.org/A001608.
- ↑ (sequence A078712 in the OEIS)
- ↑ (sequence A112881 in the OEIS)
- ↑ (sequence A074788 in the OEIS)
- ↑ (Lucas 1876)
- ↑ (Perrin 1899)
- ↑ (Adams Shanks)
- ↑ (Kurtz Shanks)
- ↑ (sequence A001608 in the OEIS)
- ↑ (Füredi 1987)
- ↑ (sequence A013998 in the OEIS)
- ↑ (Adams Shanks)
- ↑ (Grantham 2010)
- ↑ (sequence A018187 in the OEIS)
- ↑ (Adams Shanks)
- ↑ (Adams Shanks)
- ↑ Weisstein, Eric W.. "Recurrence Relation Signature". http://mathworld.wolfram.com/RecurrenceRelationSignature.html., (sequence A275612 in the OEIS), (sequence A275613 in the OEIS).
- ↑ dubbed Secundo in (Kurtz Shanks)
- ↑ (Kurtz Shanks)
References
- "Sur la recherche des grands nombres premiers". Congrès de Clermont-Ferrand (5 ed.). Association française pour l'avancement des sciences. 1876. pp. 61−68. http://visualiseur.bnf.fr/CadresFenetre?O=NUMM-201152&I=131&M=pagination.
- "Query 1484". L'Intermédiaire des Mathématiciens (Gauthier-Villars et fils) 6: 76−77. 1899.
- Adams, William (1982). "Strong primality tests that are not sufficient". Mathematics of Computation (American Mathematical Society) 39 (159): 255−300. doi:10.1090/S0025-5718-1982-0658231-9.
- Kurtz, G.C. (1986). "Fast primality tests for numbers less than 50∙109". Mathematics of Computation (American Mathematical Society) 46 (174): 691−701. doi:10.1090/S0025-5718-1986-0829639-7.
- "The number of maximal independent sets in connected graphs". Journal of Graph Theory 11 (4): 463−470. 1987. doi:10.1002/jgt.3190110403.
- Grantham, Jon (2010). "There are infinitely many Perrin pseudoprimes". Journal of Number Theory 130 (5): 1117−1128. doi:10.1016/j.jnt.2009.11.008.
External links
- "Perrin's Sequence". MathPages.com. http://www.mathpages.com/home/kmath345/kmath345.htm.
- "Lucas and Perrin Pseudoprimes". MathPages.com. http://www.mathpages.com/home/kmath127/kmath127.htm.
- Jacobsen, Dana (2016). "Perrin Primality Tests".
- Holzbaur, Christian (1997). "Perrin Pseudoprimes".
Original source: https://en.wikipedia.org/wiki/Perrin number.
Read more |