Chemistry:Lanthanum(III) chloride

From HandWiki
Revision as of 19:23, 5 February 2024 by BotanyGa (talk | contribs) (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Lanthanum(III) chloride
Lanthanum(III) chloride
Anhydrous
UCl3 without caption.png
Cerium bromide (space filling) 2.png
Names
Other names
Lanthanum trichloride
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 233-237-5
UNII
Properties
LaCl3
Molar mass 245.264 g/mol (anhydrous)
353.36 g/mol (hexahydrate)
371.37 g/mol (heptahydrate)
Appearance white odorless powder
hygroscopic
Melting point 858 °C (1,576 °F; 1,131 K) (anhydrous)[1]
Boiling point 1,000 °C (1,830 °F; 1,270 K) (anhydrous)
957 g/L (25 °C)[1]
Solubility soluble in ethanol (heptahydrate)
Structure[2]
hexagonal (UCl3 type), hP8
P63/m, No. 176
a = 0.74779 nm, b = 0.74779 nm, c = 0.43745 nm
2
Tricapped trigonal prismatic,(nine-coordinate)
Related compounds
Other anions
Lanthanum oxide
Other cations
Cerium(III) chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references

Lanthanum chloride is the inorganic compound with the formula LaCl3. It is a common salt of lanthanum which is mainly used in research. It is a white solid that is highly soluble in water and alcohols.

Preparation

Anhydrous lanthanum(III) chloride can be produced by the ammonium chloride route.[3][4][5] In the first step, lanthanum oxide is heated with ammonium chloride to produce the ammonium salt of the pentachloride:

La2O3 + 10 NH4Cl → 2 (NH4)2LaCl5 + 6 H2O + 6 NH3

In the second step, the ammonium chloride salt is converted to the trichlorides by heating in a vacuum at 350-400 °C:

(NH4)2LaCl5 → LaCl3 + 2 HCl + 2 NH3

Uses

Lanthanum chloride is also used in biochemical research to block the activity of divalent cation channels, mainly calcium channels. Doped with cerium, it is used as a scintillator material.[6]

In organic synthesis, lanthanum trichloride functions as a mild Lewis acid for converting aldehydes to acetals.[7]

The compound has been identified as a catalyst for the high pressure oxidative chlorination of methane to chloromethane with hydrochloric acid and oxygen.[8]

Also used in the field of geology as a very dilute solution, which when combined with the proper acids can help identify small >1% Strontium content in powdered rock samples.

References

  1. 1.0 1.1 Cite error: Invalid <ref> tag; no text was provided for refs named r1
  2. Morosin, B (1968). "Crystal Structures of Anhydrous Rare-Earth Chlorides". The Journal of Chemical Physics 49 (7): 3007–3012. doi:10.1063/1.1670543. Bibcode1968JChPh..49.3007M. 
  3. Brauer, G., ed (1963). Handbook of Preparative Inorganic Chemistry (2nd ed.). New York: Academic Press. 
  4. Meyer, G. (1989). "The Ammonium Chloride Route to Anhydrous Rare Earth Chlorides—The Example of Ycl 3". The Ammonium Chloride Route to Anhydrous Rare Earth Chlorides-The Example of YCl3. Inorganic Syntheses. 25. pp. 146–150. doi:10.1002/9780470132562.ch35. ISBN 978-0-470-13256-2. 
  5. Edelmann, F. T.; Poremba, P. (1997). Herrmann, W. A.. ed. Synthetic Methods of Organometallic and Inorganic Chemistry. VI. Stuttgart: Georg Thieme Verlag. ISBN 978-3-13-103021-4. 
  6. Martin, T; Allier, C; Bernard, F (2007). "Lanthanum Chloride Scintillator for X-ray Detection". AIP Conference Proceedings. 879. pp. 1156–1159. doi:10.1063/1.2436269. 
  7. Lenin, R.; Raju, R. Madhusudhan (2007). "Lanthanum trichloride: An efficient Lewis acid catalyst for chemo and regioselective enamination of β-dicarbonyl compounds". Arkivoc 2007 (13): 204–209. doi:10.3998/ark.5550190.0008.d23. 
  8. "Methyl chloride production from methane over lanthanum-based catalysts". J. Am. Chem. Soc. 129 (9): 2569–76. 2007. doi:10.1021/ja066913w. PMID 17295483.