Chemistry:PIPES

From HandWiki
PIPES
Chemical structure of PIPES
Names
Preferred IUPAC name
2,2-(Piperazine-1,4-diyl)di(ethane-1-sulfonic acid)
Other names
PIPES
Identifiers
3D model (JSmol)
ChemSpider
UNII
Properties
C8H18N2O6S2
Molar mass 302.37
Appearance White powder
Melting point Decomposes above 300 °C
Boiling point Decomposes
1 g/L (100 °C)
Hazards
Main hazards Irritant
Safety data sheet External MSDS
NFPA 704 (fire diamond)
Flammability code 0: Will not burn. E.g. waterHealth code 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no codeNFPA 704 four-colored diamond
0
1
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references

PIPES (piperazine-N,N-bis(2-ethanesulfonic acid)) is a frequently used buffering agent in biochemistry. It is an ethanesulfonic acid buffer developed by Good et al. in the 1960s.[1]

Applications

PIPES has two pKa values. One pKa (6.76 at 25 °C) is near the physiological pH which makes it useful in cell culture work. Its effective buffering range is 6.1-7.5 at 25 °C. The second pKa value is at 2.67 with a buffer range of from 1.5-3.5. PIPES has been documented minimizing lipid loss when buffering glutaraldehyde histology in plant and animal tissues.[2][3] Fungal zoospore fixation for fluorescence microscopy and electron microscopy were optimized with a combination of glutaraldehyde and formaldehyde in PIPES buffer.[4] It has a negligible capacity to bind divalent ions.[5]

See also

References

  1. Good, Norman E.; Winget, G. Douglas; Winter, Wilhelmina; Connolly, Thomas N.; Izawa, Seikichi; Singh, Raizada M. M. (1966). "Hydrogen Ion Buffers for Biological Research". Biochemistry 5 (2): 467–77. doi:10.1021/bi00866a011. PMID 5942950. 
  2. Salema, R. and Brando, I., J. Submicr. Cytol., 9, 79 (1973).
  3. Schiff, R.I. and Gennaro, J.F., Scaning Electron Microsc., 3, 449 (1979).
  4. Hardham, A.R. (1985). "Studies on the cell surface of zoospores and cysts of the fungus Phytophthora cinnamomi: The influence of fixation on patterns of lectin binding". Journal of Histochemistry 33 (2): 110–8. doi:10.1177/33.2.3918095. PMID 3918095. http://www.jhc.org/cgi/content/abstract/33/2/110. 
  5. "Hopax Fine Chemicals - Biological buffers and their interactions with metal ions". https://www.hopaxfc.com/en/blog/biological-buffers-and-their-interactions-with-metal-ions.