Physics:Dual photon

From HandWiki
Revision as of 04:20, 5 February 2024 by StanislovAI (talk | contribs) (update)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Hypothetical particle dual to the photon
Dual Photon
CompositionElementary particle
StatisticsBosonic
InteractionsElectromagnetic
StatusHypothetical
Theorized2000s[1][2][3][4][5]
electric chargee
Spin1

In theoretical physics, the dual photon is a hypothetical elementary particle that is a dual of the photon under electric–magnetic duality which is predicted by some theoretical models,[3][4][5] including M-theory.[1][2]

It has been shown that including magnetic monopole in Maxwell's equations introduces a singularity. The only way to avoid the singularity is to include a second four-vector potential, called dual photon, in addition to the usual four-vector potential, photon.[6] Additionally, it is found that the standard Lagrangian of electromagnetism is not dual symmetric (i.e. symmetric under rotation between electric and magnetic charges) which causes problems for the energy–momentum, spin, and orbital angular momentum tensors. To resolve this issue, a dual symmetric Lagrangian of electromagnetism has been proposed,[3] which has a self-consistent separation of the spin and orbital degrees of freedom. The Poincaré symmetries imply that the dual electromagnetism naturally makes self-consistent conservation laws.[3]

Dual electromagnetism

The free electromagnetic field is described by a covariant antisymmetric tensor [math]\displaystyle{ F_{\alpha \beta} }[/math] of rank 2 by

[math]\displaystyle{ F_{\alpha \beta} \, = \, \partial_{\alpha} A_{\beta} \, - \, \partial_{\beta} A_{\alpha} \,. }[/math]

where [math]\displaystyle{ A_{\alpha} }[/math] is the electromagnetic potential.

The dual electromagnetic field [math]\displaystyle{ \star F_{\alpha \beta} }[/math] is defined as

[math]\displaystyle{ \star F_{\alpha \beta} = \frac{1}{2} \epsilon_{\alpha\beta}{}^{\sigma\lambda} F_{\sigma\lambda} . }[/math]

where [math]\displaystyle{ \star }[/math] denotes the Hodge dual, and [math]\displaystyle{ \epsilon_{\mu\nu\sigma\lambda} }[/math] is the Levi-Civita tensor

For the electromagnetic field and its dual field, we have

[math]\displaystyle{ \partial_{\alpha} F^{\alpha \beta} \, = \, 0, }[/math]
[math]\displaystyle{ \partial_{\alpha} {\star} F^{\alpha \beta} \, = \, 0. }[/math]

Then, for a given gauge field [math]\displaystyle{ A_{\alpha} }[/math], the dual configuration [math]\displaystyle{ \star A_{\alpha} }[/math] is defined as[2]

[math]\displaystyle{ \star F^{\alpha \beta}(A) \, = \, F^{\alpha \beta} (\star A), }[/math]
[math]\displaystyle{ \star F^{\alpha \beta}(\star A) \, = \, -F^{\alpha \beta} (A). }[/math]

where [math]\displaystyle{ \star A_{\alpha} }[/math] the field potential of the dual photon, and non-locally linked to the original field potential [math]\displaystyle{ A_{\alpha} }[/math].

p-form electrodynamics

A p-form generalization of Maxwell's theory of electromagnetism is described by a gauge-invariant 2-form [math]\displaystyle{ \mathbf{F} }[/math] defined as

[math]\displaystyle{ \mathbf{F}=d\mathbf{A} }[/math].

which satisfies the equation of motion

[math]\displaystyle{ d\,{\star}\mathbf{F}=\star\mathbf{J} }[/math]

where [math]\displaystyle{ \star }[/math] is the Hodge star operator.

This implies the following action in the spacetime manifold [math]\displaystyle{ M }[/math]:[7][8]

[math]\displaystyle{ S=\int_M \left[\frac{1}{2}\mathbf{F}\wedge \star\mathbf{F} - \mathbf{A} \wedge \star\mathbf{J}\right] }[/math]

where [math]\displaystyle{ \star\mathbf{F} }[/math] is the dual of the gauge-invariant 2-form [math]\displaystyle{ \mathbf{F} }[/math] for the electromagnetic field.

Dark photon

This artist's impression shows the dark photon A′ decays into an electron and a positron.[9]

The dark photon is a spin-1 boson associated with a U(1) gauge field, which could be massless[10] and behaves like electromagnetism. But, it could be unstable and massive, quickly decays into electronpositron pairs, and interact with electrons.

The dark photon was first suggested in 2008 by Lotty Ackerman, Matthew R. Buckley, Sean M. Carroll, and Marc Kamionkowski to explain the 'g–2 anomaly' in experiment E821 at Brookhaven National Laboratory.[11] Nevertheless, it was ruled out in some experiments such as the PHENIX detector at the Relativistic Heavy Ion Collider at Brookhaven.[12]

In 2015, the Hungarian Academy of Sciences's Institute for Nuclear Research in Debrecen, Hungary, suggested the existence of a new, light spin-1 boson, dubbed the X17 particle, 34 times heavier than the electron[13] that decays into a pair of electron and positron with a combined energy of 17 MeV. In 2016, it was proposed that it is an X-boson with a mass of 16.7 MeV that explains the g−2 muon anomaly.[13][14]

See also


References

  1. 1.0 1.1 Tong, D.; Lambert, N. (2008). "Membranes on an Orbifold". Physical Review Letters 101 (4): 041602. doi:10.1103/PhysRevLett.101.041602. PMID 18764318. Bibcode2008PhRvL.101d1602L. 
  2. 2.0 2.1 2.2 Bakas, I. (2010). "Dual photons and gravitons". Publ.Astron.Obs.Belgrade 88: 113–132. Bibcode2010POBeo..88..113B. 
  3. 3.0 3.1 3.2 3.3 Bliokh, K. Y.; Bekshaev, A. Y.; Nori, F. (2013). "Dual electromagnetism: helicity, spin, momentum and angular momentum". New Journal of Physics 15 (3): 033026. doi:10.1088/1367-2630/15/3/033026. Bibcode2013NJPh...15c3026B. 
  4. 4.0 4.1 Elbistan, M.; Duval, C.; Horváthy, P. A.; Zhang, P.-M. (2016). "Duality and helicity: A symplectic viewpoint". Physics Letters B 761: 265–268. doi:10.1016/j.physletb.2016.08.041. Bibcode2016PhLB..761..265E. 
  5. 5.0 5.1 Elbistan, M.; Horváthy, P. A.; Zhang, P.-M. (2017). "Duality and helicity: the photon wave function approach". Physics Letters A 381 (30): 2375–2379. doi:10.1016/j.physleta.2017.05.042. Bibcode2017PhLA..381.2375E. 
  6. Singleton, D. (1996). "Electromagnetism with magnetic charge and two photons". American Journal of Physics 64 (4): 452–458. doi:10.1119/1.18191. Bibcode1996AmJPh..64..452S. 
  7. Henneaux, M.; Teitelboim, C. (1986). "p-Form electrodynamics". Foundations of Physics 16 (7): 593–617. doi:10.1007/BF01889624. Bibcode1986FoPh...16..593H. 
  8. Henneaux, M.; Bunster, C. (2011). "Action for twisted self-duality". Physical Review D 83 (12): 125015. doi:10.1103/PhysRevD.83.125015. Bibcode2011PhRvD..83l5015B. 
  9. "Viewpoint: New Light Shed on Dark Photons" (Press release). American Physical Society. 10 November 2014.
  10. Carroll, Sean M. (October 29, 2008). "Dark photons". http://www.preposterousuniverse.com/blog/2008/10/29/dark-photons/. 
  11. Bennett, G. W.; Bousquet, B.; Brown, H. N.; Bunce, G.; Carey, R. M.; Cushman, P.; Danby, G. T.; Debevec, P. T. (2006-04-07). "Final report of the E821 muon anomalous magnetic moment measurement at BNL". Physical Review D 73 (7): 072003. doi:10.1103/PhysRevD.73.072003. Bibcode2006PhRvD..73g2003B. 
  12. Walsh, Karen McNulty (February 19, 2015). "Data from RHIC, other experiments nearly rule out role of 'dark photons' as explanation for 'g-2' anomaly". PhysOrg. http://phys.org/news/2015-02-rhic-role-dark-photons-explanation.html. 
  13. 13.0 13.1 Cartlidge, Edwin (2016). "Has a Hungarian physics lab found a fifth force of nature?". Nature. doi:10.1038/nature.2016.19957. http://www.nature.com/news/has-a-hungarian-physics-lab-found-a-fifth-force-of-nature-1.19957. 
  14. Feng, J. L.; Fornal, B.; Galon, I.; Gardner, S.; Smolinsky, J.; Tait, T. M. P.; Tanedo, P. (2016). "Protophobic Fifth-Force Interpretation of the Observed Anomaly in 8Be Nuclear Transitions". Physical Review Letters 117 (7): 071803. doi:10.1103/PhysRevLett.117.071803. PMID 27563952. Bibcode2016PhRvL.117g1803F. https://zenodo.org/record/1059042.