Chemistry:Molybdenum hexafluoride

From HandWiki
Revision as of 02:24, 6 February 2024 by OrgMain (talk | contribs) (change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Molybdenum hexafluoride
Molybdenum(VI)-fluoride.svg
Molybdenum-hexafluoride-from-xtal-3D-SF.png
Names
IUPAC names
molybdenum(VI) fluoride
Other names
molybdenum hexafluoride
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 232-026-5
UNII
Properties
MoF6
Molar mass 209.93 g/mol
Appearance white crystals[1] or colorless liquid
hygroscopic
Density 3.50 g/cm3[2]
Melting point 17.5 °C (63.5 °F; 290.6 K)[1]
Boiling point 34.0 °C (93.2 °F; 307.1 K)[1]
hydrolyzes
−26.0·10−6 cm3/mol
Structure
Orthorhombic, oP28
Pnma, No. 62
octahedral (Oh)
0
Related compounds
Other cations
Tungsten hexafluoride
Uranium hexafluoride
Molybdenum(VI) chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

Molybdenum hexafluoride, also molybdenum(VI) fluoride, is the inorganic compound with the formula MoF6. It is the highest fluoride of molybdenum. It is a colourless solid and melts just below room temperature and boils in 34 °C.[3] It is one of the seventeen known binary hexafluorides.

Synthesis

Molybdenum hexafluoride is made by direct reaction of molybdenum metal in an excess of elemental fluorine:[2]

Mo + 3 F2MoF6

The compound hydrolyzes easily,[4] and typical impurities are MoO2F2 and MoOF4.[5]

Description

At −140 °C, it crystallizes in the orthorhombic space group Pnma. Lattice parameters are a = 9.394 Å, b = 8.543 Å, and c = 4.959 Å. There are four formula units (in this case, discrete molecules) per unit cell, giving a density of 3.50 g·cm−3.[2] The fluorine atoms are arranged in the hexagonal close packing.[6]

In liquid and gas phase, MoF6 adopt octahedral molecular geometry with point group Oh. The Mo–F bond length is 1.817 Å.[2]

Applications

Molybdenum hexafluoride has few uses. In the nuclear industry, MoF6 occurs as an impurity in uranium hexafluoride since molybdenum is a fission product of uranium.

The semiconductor industry constructs various integrated circuits through chemical vapor deposition of molybdenum hexafluoride.[4] In some cases, the deposited molybdenum is an impurity in the intended tungsten hexafluoride. MoF6 can be removed by reduction of a WF6-MoF6 mixture with any of a number of elements including hydrogen iodide at moderately elevated temperature.[7][8]

References

  1. 1.0 1.1 1.2 CRC Handbook of Chemistry and Physics, 90th Edition, CRC Press, Boca Raton, Florida, 2009, ISBN:978-1-4200-9084-0, Section 4, Physical Constants of Inorganic Compounds, p. 4-85.
  2. 2.0 2.1 2.2 2.3 T. Drews, J. Supeł, A. Hagenbach, K. Seppelt: "Solid State Molecular Structures of Transition Metal Hexafluorides", in: Inorganic Chemistry, 2006, 45 (9), S. 3782–3788; doi:10.1021/ic052029f; PMID 16634614
  3. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8. 
  4. 4.0 4.1 Meshri., Dayal T. (2000), "Fluorine compounds, inorganic, molybdenum", Kirk-Othmer Encyclopedia of Chemical Technology, New York: John Wiley, doi:10.1002/0471238961.1315122513051908.a01, ISBN 9780471238966, http://onlinelibrary.wiley.com/book/10.1002/0471238961 
  5. W. Kwasnik "Molybdenum(VI) Fluoride" Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 259.
  6. J. H. Levy, J. C Taylor, A. B. Waugh: "Neutron Powder Structural Studies of UF6, MoF6 and WF6 at 77 K", in: Journal of Fluorine Chemistry, 1983, 23 (1), pp. 29–36; doi:10.1016/S0022-1139(00)81276-2.
  7. US-Patent 5234679: Method of Refining Tungsten Hexafluoride Containing Molybdenum Hexafluoride as an Impurity , 10 August 1993
  8. US-Patent 6896866: Method for Purification of Tungsten Hexafluoride , 24 May 2005.