Engineering:Transistor count
The transistor count is the number of transistors in an electronic device (typically on a single substrate or "chip"). It is the most common measure of integrated circuit complexity (although the majority of transistors in modern microprocessors are contained in cache memories, which consist mostly of the same memory cell circuits replicated many times).
The rate at which MOS transistor counts have increased generally follows Moore's law, which observes that transistor count doubles approximately every two years.[1] However, being directly proportional to the area of a chip, transistor count does not represent how advanced the corresponding manufacturing technology is: a better indication of this is transistor density (the ratio of a chip's transistor count to its area).
(As of 2023), the highest transistor count in flash memory is Micron's 2 terabyte (3D-stacked) 16-die, 232-layer V-NAND flash memory chip, with 5.3 trillion floating-gate MOSFETs (3 bits per transistor).
The highest transistor count in a single chip processor (As of 2020) is that of the deep learning processor Wafer Scale Engine 2 by Cerebras. It has 2.6 trillion MOSFETs in 84 exposed fields (dies) on a wafer, manufactured using TSMC's 7 nm FinFET process.[2][3][4][5][6]
(As of 2023), the GPU with the highest transistor count is AMD's MI300X, built on TSMC's N5 process and totalling 153 billion MOSFETs.
The highest transistor count in a consumer microprocessor (As of June 2023) is 134 billion transistors, in Apple's ARM-based dual-die M2 Ultra system on a chip, which is fabricated using TSMC's 5 nm semiconductor manufacturing process.[7]
Year | Component | Name | Number of MOSFETs (in trillions) |
Remarks |
---|---|---|---|---|
2022 | Flash memory | Micron's V-NAND chip | 5.3 | stacked package of sixteen 232-layer 3D NAND dies |
2020 | any processor | Wafer Scale Engine 2 | 2.6 | wafer-scale design of 84 exposed fields (dies) |
2023 | GPU | MI300X | 0.153 | |
2023 | microprocessor (commercial) |
M2 Ultra | 0.134 | dual-die SoC; entire M2 Ultra is a multi-chip module |
2020 | DLP | Colossus Mk2 GC200 | 0.059 | An IPU in contrast to CPU and GPU |
In terms of computer systems that consist of numerous integrated circuits, the supercomputer with the highest transistor count (As of 2016) was the Chinese-designed Sunway TaihuLight, which has for all CPUs/nodes combined "about 400 trillion transistors in the processing part of the hardware" and "the DRAM includes about 12 quadrillion transistors, and that's about 97 percent of all the transistors."[8] To compare, the smallest computer, (As of 2018) dwarfed by a grain of rice, had on the order of 100,000 transistors. Early experimental solid-state computers had as few as 130 transistors but used large amounts of diode logic. The first carbon nanotube computer had 178 transistors and was a 1-bit one-instruction set computer, while a later one is 16-bit (its instruction set is 32-bit RISC-V though).
Ionic transistor chips ("water-based" analog limited processor), have up to hundreds of such transistors.[9]
Estimates of the total numbers of transistors manufactured:
Transistor count
Microprocessors
A microprocessor incorporates the functions of a computer's central processing unit on a single integrated circuit. It is a multi-purpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output.
The development of MOS integrated circuit technology in the 1960s led to the development of the first microprocessors.[12] The 20-bit MP944, developed by Garrett AiResearch for the U.S. Navy's F-14 Tomcat fighter in 1970, is considered by its designer Ray Holt to be the first microprocessor.[13] It was a multi-chip microprocessor, fabricated on six MOS chips. However, it was classified by the Navy until 1998. The 4-bit Intel 4004, released in 1971, was the first single-chip microprocessor.
Modern microprocessors typically include on-chip cache memories. The number of transistors used for these cache memories typically far exceeds the number of transistors used to implement the logic of the microprocessor (that is, excluding the cache). For example, the last DEC Alpha chip uses 90% of its transistors for cache.[14]
Processor | Transistor count | Year | Designer | Process (nm) |
Area (mm2) | Transistor density (tr./mm2) |
---|---|---|---|---|---|---|
MP944 (20-bit, 6-chip, 28 chips total) | 74,442 (5,360 excl. ROM & RAM)[15][16] | 1970[13][lower-alpha 1] | Garrett AiResearch | ? | ? | ? |
Intel 4004 (4-bit, 16-pin) | 2,250 | 1971 | Intel | 10,000 nm | 12 mm2 | 188 |
TMX 1795 (?-bit, 24-pin) | 3,078[17] | 1971 | Texas Instruments | ? | 30.64 mm2 | 100.5 |
Intel 8008 (8-bit, 18-pin) | 3,500 | 1972 | Intel | 10,000 nm | 14 mm2 | 250 |
NEC μCOM-4 (4-bit, 42-pin) | 2,500[18][19] | 1973 | NEC | 7,500 nm[20] | ? | ? |
Toshiba TLCS-12 (12-bit) | 11,000+[21] | 1973 | Toshiba | 6,000 nm | 32 mm2 | 340+ |
Intel 4040 (4-bit, 16-pin) | 3,000 | 1974 | Intel | 10,000 nm | 12 mm2 | 250 |
Motorola 6800 (8-bit, 40-pin) | 4,100 | 1974 | Motorola | 6,000 nm | 16 mm2 | 256 |
Intel 8080 (8-bit, 40-pin) | 6,000 | 1974 | Intel | 6,000 nm | 20 mm2 | 300 |
TMS 1000 (4-bit, 28-pin) | 8,000[lower-alpha 2] | 1974[22] | Texas Instruments | 8,000 nm | 11 mm2 | 730 |
MOS Technology 6502 (8-bit, 40-pin) | 4,528[lower-alpha 3][23] | 1975 | MOS Technology | 8,000 nm | 21 mm2 | 216 |
Intersil IM6100 (12-bit, 40-pin; clone of PDP-8) | 4,000 | 1975 | Intersil | ? | ? | ? |
CDP 1801 (8-bit, 2-chip, 40-pin) | 5,000 | 1975 | RCA | ? | ? | ? |
RCA 1802 (8-bit, 40-pin) | 5,000 | 1976 | RCA | 5,000 nm | 27 mm2 | 185 |
Zilog Z80 (8-bit, 4-bit ALU, 40-pin) | 8,500[lower-alpha 4] | 1976 | Zilog | 4,000 nm | 18 mm2 | 470 |
Intel 8085 (8-bit, 40-pin) | 6,500 | 1976 | Intel | 3,000 nm | 20 mm2 | 325 |
TMS9900 (16-bit) | 8,000 | 1976 | Texas Instruments | ? | ? | ? |
Bellmac-8 (8-bit) | 7,000 | 1977 | Bell Labs | 5,000 nm | ? | ? |
Motorola 6809 (8-bit with some 16-bit features, 40-pin) | 9,000 | 1978 | Motorola | 5,000 nm | 21 mm2 | 430 |
Intel 8086 (16-bit, 40-pin) | 29,000[24] | 1978 | Intel | 3,000 nm | 33 mm2 | 880 |
Zilog Z8000 (16-bit) | 17,500[25] | 1979 | Zilog | ? | ? | ? |
Intel 8088 (16-bit, 8-bit data bus) | 29,000 | 1979 | Intel | 3,000 nm | 33 mm2 | 880 |
Motorola 68000 (16/32-bit, 32-bit registers, 16-bit ALU) | 68,000[26] | 1979 | Motorola | 3,500 nm | 44 mm2 | 1,550 |
Intel 8051 (8-bit, 40-pin) | 50,000 | 1980 | Intel | ? | ? | ? |
WDC 65C02 | 11,500[27] | 1981 | WDC | 3,000 nm | 6 mm2 | 1,920 |
ROMP (32-bit) | 45,000 | 1981 | IBM | 2,000 nm | 58.52 mm2 | 770 |
Intel 80186 (16-bit, 68-pin) | 55,000 | 1982 | Intel | 3,000 nm | 60 mm2 | 920 |
Intel 80286 (16-bit, 68-pin) | 134,000 | 1982 | Intel | 1,500 nm | 49 mm2 | 2,730 |
WDC 65C816 (8/16-bit) | 22,000[28] | 1983 | WDC | 3,000 nm[29] | 9 mm2 | 2,400 |
NEC V20 | 63,000 | 1984 | NEC | ? | ? | ? |
Motorola 68020 (32-bit; 114 pins used) | 190,000[30] | 1984 | Motorola | 2,000 nm | 85 mm2 | 2,200 |
Intel 80386 (32-bit, 132-pin; no cache) | 275,000 | 1985 | Intel | 1,500 nm | 104 mm2 | 2,640 |
ARM 1 (32-bit; no cache) | 25,000[30] | 1985 | Acorn | 3,000 nm | 50 mm2 | 500 |
Novix NC4016 (16-bit) | 16,000[31] | 1985[32] | Harris Corporation | 3,000 nm[33] | ? | ? |
SPARC MB86900 (32-bit; no cache) | 110,000[34] | 1986 | Fujitsu | 1,200 nm | ? | ? |
NEC V60[35] (32-bit; no cache) | 375,000 | 1986 | NEC | 1,500 nm | ? | ? |
ARM 2 (32-bit, 84-pin; no cache) | 27,000[36][30] | 1986 | Acorn | 2,000 nm | 30.25 mm2 | 890 |
Z80000 (32-bit; very small cache) | 91,000 | 1986 | Zilog | ? | ? | ? |
NEC V70[35] (32-bit; no cache) | 385,000 | 1987 | NEC | 1,500 nm | ? | ? |
Hitachi Gmicro/200[37] | 730,000 | 1987 | Hitachi | 1,000 nm | ? | ? |
Motorola 68030 (32-bit, very small caches) | 273,000 | 1987 | Motorola | 800 nm | 102 mm2 | 2,680 |
TI Explorer's 32-bit Lisp machine chip | 553,000[38] | 1987 | Texas Instruments | 2,000 nm[39] | ? | ? |
DEC WRL MultiTitan | 180,000[40] | 1988 | DEC WRL | 1,500 nm | 61 mm2 | 2,950 |
Intel i960 (32-bit, 33-bit memory subsystem, no cache) | 250,000[41] | 1988 | Intel | 1,500 nm[42] | ? | ? |
Intel i960CA (32-bit, cache) | 600,000[42] | 1989 | Intel | 800 nm | 143 mm2 | 4,200 |
Intel i860 (32/64-bit, 128-bit SIMD, cache, VLIW) | 1,000,000[43] | 1989 | Intel | ? | ? | ? |
Intel 80486 (32-bit, 4 KB cache) | 1,180,235 | 1989 | Intel | 1,000 nm | 173 mm2 | 6,822 |
ARM 3 (32-bit, 4 KB cache) | 310,000 | 1989 | Acorn | 1,500 nm | 87 mm2 | 3,600 |
POWER1 (9-chip module, 72 kB of cache) | 6,900,000[44] | 1990 | IBM | 1,000 nm | 1,283.61 mm2 | 5,375 |
Motorola 68040 (32-bit, 8 KB caches) | 1,200,000 | 1990 | Motorola | 650 nm | 152 mm2 | 7,900 |
R4000 (64-bit, 16 KB of caches) | 1,350,000 | 1991 | MIPS | 1,000 nm | 213 mm2 | 6,340 |
ARM 6 (32-bit, no cache for this 60 variant) | 35,000 | 1991 | ARM | 800 nm | ? | ? |
Hitachi SH-1 (32-bit, no cache) | 600,000[45] | 1992[46] | Hitachi | 800 nm | 100 mm2 | 6,000 |
Intel i960CF (32-bit, cache) | 900,000[42] | 1992 | Intel | ? | 125 mm2 | 7,200 |
Alpha 21064 (64-bit, 290-pin; 16 KB of caches) | 1,680,000 | 1992 | DEC | 750 nm | 233.52 mm2 | 7,190 |
Hitachi HARP-1 (32-bit, cache) | 2,800,000[47] | 1993 | Hitachi | 500 nm | 267 mm2 | 10,500 |
Pentium (32-bit, 16 KB of caches) | 3,100,000 | 1993 | Intel | 800 nm | 294 mm2 | 10,500 |
POWER2 (8-chip module, 288 kB of cache) | 23,037,000[48] | 1993 | IBM | 720 nm | 1,217.39 mm2 | 18,923 |
ARM700 (32-bit; 8 KB cache) | 578,977[49] | 1994 | ARM | 700 nm | 68.51 mm2 | 8,451 |
MuP21 (21-bit,[50] 40-pin; includes video) | 7,000[51] | 1994 | Offete Enterprises | 1,200 nm | ? | ? |
Motorola 68060 (32-bit, 16 KB of caches) | 2,500,000 | 1994 | Motorola | 600 nm | 218 mm2 | 11,500 |
PowerPC 601 (32-bit, 32 KB of caches) | 2,800,000[52] | 1994 | Apple, IBM, Motorola | 600 nm | 121 mm2 | 23,000 |
PowerPC 603 (32-bit, 16 KB of caches) | 1,600,000[53] | 1994 | Apple, IBM, Motorola | 500 nm | 84.76 mm2 | 18,900 |
PowerPC 603e (32-bit, 32 KB of caches) | 2,600,000[54] | 1995 | Apple, IBM, Motorola | 500 nm | 98 mm2 | 26,500 |
Alpha 21164 EV5 (64-bit, 112 kB cache) | 9,300,000[55] | 1995 | DEC | 500 nm | 298.65 mm2 | 31,140 |
SA-110 (32-bit, 32 KB of caches) | 2,500,000[30] | 1995 | Acorn, DEC, Apple | 350 nm | 50 mm2 | 50,000 |
Pentium Pro (32-bit, 16 KB of caches;[56] L2 cache on-package, but on separate die) | 5,500,000[57] | 1995 | Intel | 500 nm | 307 mm2 | 18,000 |
PA-8000 64-bit, no cache | 3,800,000[58] | 1995 | HP | 500 nm | 337.69 mm2 | 11,300 |
Alpha 21164A EV56 (64-bit, 112 kB cache) | 9,660,000[59] | 1996 | DEC | 350 nm | 208.8 mm2 | 46,260 |
AMD K5 (32-bit, caches) | 4,300,000 | 1996 | AMD | 500 nm | 251 mm2 | 17,000 |
Pentium II Klamath (32-bit, 64-bit SIMD, caches) | 7,500,000 | 1997 | Intel | 350 nm | 195 mm2 | 39,000 |
AMD K6 (32-bit, caches) | 8,800,000 | 1997 | AMD | 350 nm | 162 mm2 | 54,000 |
F21 (21-bit; includes e.g. video) | 15,000 | 1997[51] | Offete Enterprises | ? | ? | ? |
AVR (8-bit, 40-pin; w/memory) | 140,000 (48,000 excl. memory[60]) |
1997 | Nordic VLSI/Atmel | ? | ? | ? |
Pentium II Deschutes (32-bit, large cache) | 7,500,000 | 1998 | Intel | 250 nm | 113 mm2 | 66,000 |
Alpha 21264 EV6 (64-bit) | 15,200,000[61] | 1998 | DEC | 350 nm | 313.96 mm2 | 48,400 |
Alpha 21164PC PCA57 (64-bit, 48 kB cache) | 5,700,000 | 1998 | Samsung | 280 nm | 100.5 mm2 | 56,700 |
Hitachi SH-4 (32-bit, caches)[62] | 3,200,000[63] | 1998 | Hitachi | 250 nm | 57.76 mm2 | 55,400 |
ARM 9TDMI (32-bit, no cache) | 111,000[30] | 1999 | Acorn | 350 nm | 4.8 mm2 | 23,100 |
Pentium III Katmai (32-bit, 128-bit SIMD, caches) | 9,500,000 | 1999 | Intel | 250 nm | 128 mm2 | 74,000 |
Emotion Engine (64-bit, 128-bit SIMD, cache) | 1999 | Sony, Toshiba | 250 nm | 239.7 mm2[64] | 43,800 56,300 | |
Pentium II Mobile Dixon (32-bit, caches) | 27,400,000 | 1999 | Intel | 180 nm | 180 mm2 | 152,000 |
AMD K6-III (32-bit, caches) | 21,300,000 | 1999 | AMD | 250 nm | 118 mm2 | 181,000 |
AMD K7 (32-bit, caches) | 22,000,000 | 1999 | AMD | 250 nm | 184 mm2 | 120,000 |
Gekko (32-bit, large cache) | 21,000,000[65] | 2000 | IBM, Nintendo | 180 nm | 43 mm2 | 490,000 (check) |
Pentium III Coppermine (32-bit, large cache) | 21,000,000 | 2000 | Intel | 180 nm | 80 mm2 | 263,000 |
Pentium 4 Willamette (32-bit, large cache) | 42,000,000 | 2000 | Intel | 180 nm | 217 mm2 | 194,000 |
SPARC64 V (64-bit, large cache) | 191,000,000[66] | 2001 | Fujitsu | 130 nm[67] | 290 mm2 | 659,000 |
Pentium III Tualatin (32-bit, large cache) | 45,000,000 | 2001 | Intel | 130 nm | 81 mm2 | 556,000 |
Pentium 4 Northwood (32-bit, large cache) | 55,000,000 | 2002 | Intel | 130 nm | 145 mm2 | 379,000 |
Itanium 2 McKinley (64-bit, large cache) | 220,000,000 | 2002 | Intel | 180 nm | 421 mm2 | 523,000 |
Alpha 21364 (64-bit, 946-pin, SIMD, very large caches) | 152,000,000[14] | 2003 | DEC | 180 nm | 397 mm2 | 383,000 |
AMD K7 Barton (32-bit, large cache) | 54,300,000 | 2003 | AMD | 130 nm | 101 mm2 | 538,000 |
AMD K8 (64-bit, large cache) | 105,900,000 | 2003 | AMD | 130 nm | 193 mm2 | 548,700 |
Pentium M Banias (32-bit) | 77,000,000[68] | 2003 | Intel | 130 nm | 83 mm2 | 928,000 |
Itanium 2 Madison 6M (64-bit) | 410,000,000 | 2003 | Intel | 130 nm | 374 mm2 | 1,096,000 |
PlayStation 2 single chip (CPU + GPU) | 53,500,000[69] | 2003[70] | Sony, Toshiba | 90 nm[71] 130 nm[72][73] |
86 mm2 | 622,100 |
Pentium 4 Prescott (32-bit, large cache) | 112,000,000 | 2004 | Intel | 90 nm | 110 mm2 | 1,018,000 |
Pentium M Dothan (32-bit) | 144,000,000[74] | 2004 | Intel | 90 nm | 87 mm2 | 1,655,000 |
SPARC64 V+ (64-bit, large cache) | 400,000,000[75] | 2004 | Fujitsu | 90 nm | 294 mm2 | 1,360,000 |
Itanium 2 (64-bit;9 MB cache) | 592,000,000 | 2004 | Intel | 130 nm | 432 mm2 | 1,370,000 |
Pentium 4 Prescott-2M (32-bit, large cache) | 169,000,000 | 2005 | Intel | 90 nm | 143 mm2 | 1,182,000 |
Pentium D Smithfield (64-bit, large cache) | 228,000,000 | 2005 | Intel | 90 nm | 206 mm2 | 1,107,000 |
Xenon (64-bit, 128-bit SIMD, large cache) | 165,000,000 | 2005 | IBM | 90 nm | ? | ? |
Cell (32-bit, cache) | 250,000,000[76] | 2005 | Sony, IBM, Toshiba | 90 nm | 221 mm2 | 1,131,000 |
Pentium 4 Cedar Mill (32-bit, large cache) | 184,000,000 | 2006 | Intel | 65 nm | 90 mm2 | 2,044,000 |
Pentium D Presler (64-bit, large cache) | 362,000,000 [77] | 2006 | Intel | 65 nm | 162 mm2 | 2,235,000 |
Core 2 Duo Conroe (dual-core 64-bit, large caches) | 291,000,000 | 2006 | Intel | 65 nm | 143 mm2 | 2,035,000 |
Dual-core Itanium 2 (64-bit, SIMD, large caches) | 1,700,000,000[78] | 2006 | Intel | 90 nm | 596 mm2 | 2,852,000 |
AMD K10 quad-core 2M L3 (64-bit, large caches) | 463,000,000[79] | 2007 | AMD | 65 nm | 283 mm2 | 1,636,000 |
ARM Cortex-A9 (32-bit, (optional) SIMD, caches) | 26,000,000[80] | 2007 | ARM | 45 nm | 31 mm2 | 839,000 |
Core 2 Duo Wolfdale (dual-core 64-bit, SIMD, caches) | 411,000,000 | 2007 | Intel | 45 nm | 107 mm2 | 3,841,000 |
POWER6 (64-bit, large caches) | 789,000,000 | 2007 | IBM | 65 nm | 341 mm2 | 2,314,000 |
Core 2 Duo Allendale (dual-core 64-bit, SIMD, large caches) | 169,000,000 | 2007 | Intel | 65 nm | 111 mm2 | 1,523,000 |
Uniphier | 250,000,000[81] | 2007 | Matsushita | 45 nm | ? | ? |
SPARC64 VI (64-bit, SIMD, large caches) | 540,000,000 | 2007[82] | Fujitsu | 90 nm | 421 mm2 | 1,283,000 |
Core 2 Duo Wolfdale 3M (dual-core 64-bit, SIMD, large caches) | 230,000,000 | 2008 | Intel | 45 nm | 83 mm2 | 2,771,000 |
Core i7 (quad-core 64-bit, SIMD, large caches) | 731,000,000 | 2008 | Intel | 45 nm | 263 mm2 | 2,779,000 |
AMD K10 quad-core 6M L3 (64-bit, SIMD, large caches) | 758,000,000[79] | 2008 | AMD | 45 nm | 258 mm2 | 2,938,000 |
Atom (32-bit, large cache) | 47,000,000 | 2008 | Intel | 45 nm | 24 mm2 | 1,958,000 |
SPARC64 VII (64-bit, SIMD, large caches) | 600,000,000 | 2008[83] | Fujitsu | 65 nm | 445 mm2 | 1,348,000 |
Six-core Xeon 7400 (64-bit, SIMD, large caches) | 1,900,000,000 | 2008 | Intel | 45 nm | 503 mm2 | 3,777,000 |
Six-core Opteron 2400 (64-bit, SIMD, large caches) | 904,000,000 | 2009 | AMD | 45 nm | 346 mm2 | 2,613,000 |
SPARC64 VIIIfx (64-bit, SIMD, large caches) | 760,000,000[84] | 2009 | Fujitsu | 45 nm | 513 mm2 | 1,481,000 |
Atom (Pineview) 64-bit, 1-core, 512 kB L2 cache | 123,000,000[85] | 2010 | Intel | 45 nm | 66 mm2 | 1,864,000 |
Atom (Pineview) 64-bit, 2-core, 1 MB L2 cache | 176,000,000[86] | 2010 | Intel | 45 nm | 87 mm2 | 2,023,000 |
SPARC T3 (16-core 64-bit, SIMD, large caches) | 1,000,000,000[87] | 2010 | Sun/Oracle | 40 nm | 377 mm2 | 2,653,000 |
Six-core Core i7 (Gulftown) | 1,170,000,000 | 2010 | Intel | 32 nm | 240 mm2 | 4,875,000 |
POWER7 32M L3 (8-core 64-bit, SIMD, large caches) | 1,200,000,000 | 2010 | IBM | 45 nm | 567 mm2 | 2,116,000 |
Quad-core z196[88] (64-bit, very large caches) | 1,400,000,000 | 2010 | IBM | 45 nm | 512 mm2 | 2,734,000 |
Quad-core Itanium Tukwila (64-bit, SIMD, large caches) | 2,000,000,000[89] | 2010 | Intel | 65 nm | 699 mm2 | 2,861,000 |
Xeon Nehalem-EX (8-core 64-bit, SIMD, large caches) | 2,300,000,000[90] | 2010 | Intel | 45 nm | 684 mm2 | 3,363,000 |
SPARC64 IXfx (64-bit, SIMD, large caches) | 1,870,000,000[91] | 2011 | Fujitsu | 40 nm | 484 mm2 | 3,864,000 |
Quad-core + GPU Core i7 (64-bit, SIMD, large caches) | 1,160,000,000 | 2011 | Intel | 32 nm | 216 mm2 | 5,370,000 |
Six-core Core i7/8-core Xeon E5 (Sandy Bridge-E/EP) (64-bit, SIMD, large caches) |
2,270,000,000[92] | 2011 | Intel | 32 nm | 434 mm2 | 5,230,000 |
Xeon Westmere-EX (10-core 64-bit, SIMD, large caches) | 2,600,000,000 | 2011 | Intel | 32 nm | 512 mm2 | 5,078,000 |
Atom "Medfield" (64-bit) | 432,000,000[93] | 2012 | Intel | 32 nm | 64 mm2 | 6,750,000 |
SPARC64 X (64-bit, SIMD, caches) | 2,990,000,000[94] | 2012 | Fujitsu | 28 nm | 600 mm2 | 4,983,000 |
AMD Bulldozer (8-core 64-bit, SIMD, caches) | 1,200,000,000[95] | 2012 | AMD | 32 nm | 315 mm2 | 3,810,000 |
Quad-core + GPU AMD Trinity (64-bit, SIMD, caches) | 1,303,000,000 | 2012 | AMD | 32 nm | 246 mm2 | 5,297,000 |
Quad-core + GPU Core i7 Ivy Bridge (64-bit, SIMD, caches) | 1,400,000,000 | 2012 | Intel | 22 nm | 160 mm2 | 8,750,000 |
POWER7+ (8-core 64-bit, SIMD, 80 MB L3 cache) | 2,100,000,000 | 2012 | IBM | 32 nm | 567 mm2 | 3,704,000 |
Six-core zEC12 (64-bit, SIMD, large caches) | 2,750,000,000 | 2012 | IBM | 32 nm | 597 mm2 | 4,606,000 |
Itanium Poulson (8-core 64-bit, SIMD, caches) | 3,100,000,000 | 2012 | Intel | 32 nm | 544 mm2 | 5,699,000 |
Xeon Phi (61-core 32-bit, 512-bit SIMD, caches) | 5,000,000,000[96] | 2012 | Intel | 22 nm | 720 mm2 | 6,944,000 |
Apple A7 (dual-core 64/32-bit ARM64, "mobile SoC", SIMD, caches) | 1,000,000,000 | 2013 | Apple | 28 nm | 102 mm2 | 9,804,000 |
Six-core Core i7 Ivy Bridge E (64-bit, SIMD, caches) | 1,860,000,000 | 2013 | Intel | 22 nm | 256 mm2 | 7,266,000 |
POWER8 (12-core 64-bit, SIMD, caches) | 4,200,000,000 | 2013 | IBM | 22 nm | 650 mm2 | 6,462,000 |
Xbox One main SoC (64-bit, SIMD, caches) | 5,000,000,000 | 2013 | Microsoft, AMD | 28 nm | 363 mm2 | 13,770,000 |
Quad-core + GPU Core i7 Haswell (64-bit, SIMD, caches) | 1,400,000,000[97] | 2014 | Intel | 22 nm | 177 mm2 | 7,910,000 |
Apple A8 (dual-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) | 2,000,000,000 | 2014 | Apple | 20 nm | 89 mm2 | 22,470,000 |
Core i7 Haswell-E (8-core 64-bit, SIMD, caches) | 2,600,000,000[98] | 2014 | Intel | 22 nm | 355 mm2 | 7,324,000 |
Apple A8X (tri-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) | 3,000,000,000[99] | 2014 | Apple | 20 nm | 128 mm2 | 23,440,000 |
Xeon Ivy Bridge-EX (15-core 64-bit, SIMD, caches) | 4,310,000,000[100] | 2014 | Intel | 22 nm | 541 mm2 | 7,967,000 |
Xeon Haswell-E5 (18-core 64-bit, SIMD, caches) | 5,560,000,000[101] | 2014 | Intel | 22 nm | 661 mm2 | 8,411,000 |
Quad-core + GPU GT2 Core i7 Skylake K (64-bit, SIMD, caches) | 1,750,000,000 | 2015 | Intel | 14 nm | 122 mm2 | 14,340,000 |
Dual-core + GPU Iris Core i7 Broadwell-U (64-bit, SIMD, caches) | 1,900,000,000[102] | 2015 | Intel | 14 nm | 133 mm2 | 14,290,000 |
Apple A9 (dual-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) | 2,000,000,000+ | 2015 | Apple | 14 nm (Samsung) |
96 mm2 (Samsung) |
20,800,000+ |
16 nm (TSMC) |
104.5 mm2 (TSMC) |
19,100,000+ | ||||
Apple A9X (dual core 64/32-bit ARM64 "mobile SoC", SIMD, caches) | 3,000,000,000+ | 2015 | Apple | 16 nm | 143.9 mm2 | 20,800,000+ |
IBM z13 (64-bit, caches) | 3,990,000,000 | 2015 | IBM | 22 nm | 678 mm2 | 5,885,000 |
IBM z13 Storage Controller | 7,100,000,000 | 2015 | IBM | 22 nm | 678 mm2 | 10,472,000 |
SPARC M7 (32-core 64-bit, SIMD, caches) | 10,000,000,000[103] | 2015 | Oracle | 20 nm | ? | ? |
Core i7 Broadwell-E (10-core 64-bit, SIMD, caches) | 3,200,000,000[104] | 2016 | Intel | 14 nm | 246 mm2[105] | 13,010,000 |
Apple A10 Fusion (quad-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) | 3,300,000,000 | 2016 | Apple | 16 nm | 125 mm2 | 26,400,000 |
HiSilicon Kirin 960 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) | 4,000,000,000[106] | 2016 | Huawei | 16 nm | 110.00 mm2 | 36,360,000 |
Xeon Broadwell-E5 (22-core 64-bit, SIMD, caches) | 7,200,000,000[107] | 2016 | Intel | 14 nm | 456 mm2 | 15,790,000 |
Xeon Phi (72-core 64-bit, 512-bit SIMD, caches) | 8,000,000,000 | 2016 | Intel | 14 nm | 683 mm2 | 11,710,000 |
Zip CPU (32-bit, for FPGAs) | 1,286 6-LUTs[108] | 2016 | Gisselquist Technology | ? | ? | ? |
Qualcomm Snapdragon 835 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) | 3,000,000,000[109][110] | 2016 | Qualcomm | 10 nm | 72.3 mm2 | 41,490,000 |
Apple A11 Bionic (hexa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) | 4,300,000,000 | 2017 | Apple | 10 nm | 89.23 mm2 | 48,190,000 |
AMD Zen CCX (core complex unit: 4 cores, 8 MB L3 cache) | 1,400,000,000[111] | 2017 | AMD | 14 nm (GF 14LPP) |
44 mm2 | 31,800,000 |
AMD Zeppelin SoC Ryzen (64-bit, SIMD, caches) | 4,800,000,000[112] | 2017 | AMD | 14 nm | 192 mm2 | 25,000,000 |
AMD Ryzen 5 1600 Ryzen (64-bit, SIMD, caches) | 4,800,000,000[113] | 2017 | AMD | 14 nm | 213 mm2 | 22,530,000 |
IBM z14 (64-bit, SIMD, caches) | 6,100,000,000 | 2017 | IBM | 14 nm | 696 mm2 | 8,764,000 |
IBM z14 Storage Controller (64-bit) | 9,700,000,000 | 2017 | IBM | 14 nm | 696 mm2 | 13,940,000 |
HiSilicon Kirin 970 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) | 5,500,000,000[114] | 2017 | Huawei | 10 nm | 96.72 mm2 | 56,900,000 |
Xbox One X (Project Scorpio) main SoC (64-bit, SIMD, caches) | 7,000,000,000[115] | 2017 | Microsoft, AMD | 16 nm | 360 mm2[115] | 19,440,000 |
Xeon Platinum 8180 (28-core 64-bit, SIMD, caches) | 8,000,000,000[116] | 2017 | Intel | 14 nm | ? | ? |
Xeon (unspecified) | 7,100,000,000[117] | 2017 | Intel | 14 nm | 672 mm2 | 10,570,000 |
POWER9 (64-bit, SIMD, caches) | 8,000,000,000 | 2017 | IBM | 14 nm | 695 mm2 | 11,500,000 |
Freedom U500 Base Platform Chip (E51, 4×U54) RISC-V (64-bit, caches) | 250,000,000[118] | 2017 | SiFive | 28 nm | ~30 mm2 | 8,330,000 |
SPARC64 XII (12-core 64-bit, SIMD, caches) | 5,450,000,000[119] | 2017 | Fujitsu | 20 nm | 795 mm2 | 6,850,000 |
Apple A10X Fusion (hexa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) | 4,300,000,000[120] | 2017 | Apple | 10 nm | 96.40 mm2 | 44,600,000 |
Centriq 2400 (64/32-bit, SIMD, caches) | 18,000,000,000[121] | 2017 | Qualcomm | 10 nm | 398 mm2 | 45,200,000 |
AMD Epyc (32-core 64-bit, SIMD, caches) | 19,200,000,000 | 2017 | AMD | 14 nm | 768 mm2 | 25,000,000 |
Qualcomm Snapdragon 845 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) | 5,300,000,000[122] | 2017 | Qualcomm | 10 nm | 94 mm2 | 56,400,000 |
Qualcomm Snapdragon 850 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) | 5,300,000,000[123] | 2017 | Qualcomm | 10 nm | 94 mm2 | 56,400,000 |
HiSilicon Kirin 710 (octa-core ARM64 "mobile SoC", SIMD, caches) | 5,500,000,000[124] | 2018 | Huawei | 12 nm | ? | ? |
Apple A12 Bionic (hexa-core ARM64 "mobile SoC", SIMD, caches) | 6,900,000,000 [125][126] |
2018 | Apple | 7 nm | 83.27 mm2 | 82,900,000 |
HiSilicon Kirin 980 (octa-core ARM64 "mobile SoC", SIMD, caches) | 6,900,000,000[127] | 2018 | Huawei | 7 nm | 74.13 mm2 | 93,100,000 |
Qualcomm Snapdragon 8cx / SCX8180 (octa-core ARM64 "mobile SoC", SIMD, caches) | 8,500,000,000[128] | 2018 | Qualcomm | 7 nm | 112 mm2 | 75,900,000 |
Apple A12X Bionic (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) | 10,000,000,000[129] | 2018 | Apple | 7 nm | 122 mm2 | 82,000,000 |
Fujitsu A64FX (64/32-bit, SIMD, caches) | 8,786,000,000[130] | 2018[131] | Fujitsu | 7 nm | ? | ? |
Tegra Xavier SoC (64/32-bit) | 9,000,000,000[132] | 2018 | Nvidia | 12 nm | 350 mm2 | 25,700,000 |
Qualcomm Snapdragon 855 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) | 6,700,000,000[133] | 2018 | Qualcomm | 7 nm | 73 mm2 | 91,800,000 |
AMD Zen 2 core (0.5 MB L2 + 4 MB L3 cache) | 475,000,000[134] | 2019 | AMD | 7 nm | 7.83 mm2 | 60,664,000 |
AMD Zen 2 CCX (core complex: 4 cores, 16 MB L3 cache) | 1,900,000,000[134] | 2019 | AMD | 7 nm | 31.32 mm2 | 60,664,000 |
AMD Zen 2 CCD (core complex die: 8 cores, 32 MB L3 cache) | 3,800,000,000[134] | 2019 | AMD | 7 nm | 74 mm2 | 51,350,000 |
AMD Zen 2 client I/O die | 2,090,000,000[134] | 2019 | AMD | 12 nm | 125 mm2 | 16,720,000 |
AMD Zen 2 server I/O die | 8,340,000,000[134] | 2019 | AMD | 12 nm | 416 mm2 | 20,050,000 |
AMD Zen 2 Renoir die | 9,800,000,000[134] | 2019 | AMD | 7 nm | 156 mm2 | 62,820,000 |
AMD Ryzen 7 3700X (64-bit, SIMD, caches, I/O die) | 5,990,000,000[135][lower-alpha 5] | 2019 | AMD | 7 & 12 nm (TSMC) |
199 (74+125) mm2 |
30,100,000 |
HiSilicon Kirin 990 4G | 8,000,000,000[136] | 2019 | Huawei | 7 nm | 90.00 mm2 | 89,000,000 |
Apple A13 (hexa-core 64-bit ARM64 "mobile SoC", SIMD, caches) | 8,500,000,000 [137][138] |
2019 | Apple | 7 nm | 98.48 mm2 | 86,300,000 |
IBM z15 CP chip (12 cores, 256 MB L3 cache) | 9,200,000,000[139] | 2019 | IBM | 14 nm | 696 mm2 | 13,220,000 |
IBM z15 SC chip (960 MB L4 cache) | 12,200,000,000 | 2019 | IBM | 14 nm | 696 mm2 | 17,530,000 |
AMD Ryzen 9 3900X (64-bit, SIMD, caches, I/O die) | 9,890,000,000 [140][141] |
2019 | AMD | 7 & 12 nm (TSMC) |
273 mm2 | 36,230,000 |
HiSilicon Kirin 990 5G | 10,300,000,000[142] | 2019 | Huawei | 7 nm | 113.31 mm2 | 90,900,000 |
AWS Graviton2 (64-bit, 64-core ARM-based, SIMD, caches)[143][144] | 30,000,000,000 | 2019 | Amazon | 7 nm | ? | ? |
AMD Epyc Rome (64-bit, SIMD, caches) | 39,540,000,000 [140][141] |
2019 | AMD | 7 & 12 nm (TSMC) |
1,008 mm2 | 39,226,000 |
Qualcomm Snapdragon 865 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) | 10,300,000,000[145] | 2019 | Qualcomm | 7 nm | 83.54 mm2[146] | 123,300,000 |
TI Jacinto TDA4VM (ARM A72, DSP, SRAM) | 3,500,000,000[147] | 2020 | Texas Instruments | 16 nm | ? | ? |
Apple A14 Bionic (hexa-core 64-bit ARM64 "mobile SoC", SIMD, caches) | 11,800,000,000[148] | 2020 | Apple | 5 nm | 88 mm2 | 134,100,000 |
Apple M1 (octa-core 64-bit ARM64 SoC, SIMD, caches) | 16,000,000,000[149] | 2020 | Apple | 5 nm | 119 mm2 | 134,500,000 |
HiSilicon Kirin 9000 | 15,300,000,000 [150][151] |
2020 | Huawei | 5 nm | 114 mm2 | 134,200,000 |
AMD Zen 3 CCX (core complex unit: 8 cores, 32 MB L3 cache) | 4,080,000,000[152] | 2020 | AMD | 7 nm | 68 mm2 | 60,000,000 |
AMD Zen 3 CCD (core complex die) | 4,150,000,000[152] | 2020 | AMD | 7 nm | 81 mm2 | 51,230,000 |
Core 11th gen Rocket Lake (8-core 64-bit, SIMD, large caches) | 6,000,000,000+ [153] | 2021 | Intel | 14 nm +++ 14 nm | 276 mm2[154] | 37,500,000 or 21,800,000+ [155] |
AMD Ryzen 7 5800H (64-bit, SIMD, caches, I/O and GPU) | 10,700,000,000[156] | 2021 | AMD | 7 nm | 180 mm2 | 59,440,000 |
AMD Epyc 7763 (Milan) (64-core, 64-bit) | ? | 2021 | AMD | 7 & 12 nm (TSMC) |
1,064 mm2 (8×81+416)[157] |
? |
Apple A15 | 15,000,000,000 [158][159] |
2021 | Apple | 5 nm | 107.68 mm2 | 139,300,000 |
Apple M1 Pro (10-core, 64-bit) | 33,700,000,000[160] | 2021 | Apple | 5 nm | 245 mm2[161] | 137,600,000 |
Apple M1 Max (10-core, 64-bit) | 57,000,000,000 [162][160] |
2021 | Apple | 5 nm | 420.2 mm2[163] | 135,600,000 |
Power10 dual-chip module (30 SMT8 cores or 60 SMT4 cores) | 36,000,000,000[164] | 2021 | IBM | 7 nm | 1,204 mm2 | 29,900,000 |
Dimensity 9000 (ARM64 SoC) | 15,300,000,000 [165][166] |
2021 | Mediatek | 4 nm (TSMC N4) |
? | ? |
Apple A16 (ARM64 SoC) | 16,000,000,000 [167][168][169] |
2022 | Apple | 4 nm | ? | ? |
Apple M1 Ultra (dual-chip module, 2×10 cores) | 114,000,000,000 [170][171] |
2022 | Apple | 5 nm | 840.5 mm2[163] | 135,600,000 |
AMD Epyc 7773X (Milan-X) (multi-chip module, 64 cores, 768 MB L3 cache) | 26,000,000,000 + Milan[172] | 2022 | AMD | 7 & 12 nm (TSMC) |
1,352 mm2 (Milan + 8×36)[172] |
? |
IBM Telum dual-chip module (2×8 cores, 2×256 MB cache) | 45,000,000,000 [173][174] |
2022 | IBM | 7 nm (Samsung) | 1,060 mm2 | 42,450,000 |
Apple M2 (deca-core 64-bit ARM64 SoC, SIMD, caches) | 20,000,000,000[175] | 2022 | Apple | 5 nm | ? | ? |
Dimensity 9200 (ARM64 SoC) | 17,000,000,000 [176][177][178] |
2022 | Mediatek | 4 nm (TSMC N4P) |
? | ? |
Qualcomm Snapdragon 8 Gen 2 (octa-core ARM64 "mobile SoC", SIMD, caches) | 16,000,000,000 | 2022 | Qualcomm | 4 nm | 268 mm2 | 59,701,492 |
AMD EPYC Genoa (4th gen/9004 series) 13-chip module (up to 96 cores and 384 MB (L3) + 96 MB (L2) cache)[179] | 90,000,000,000 [180][181][182] |
2022 | AMD | 5 nm (CCD) 6 nm (IOD) |
1,263.34 mm2 12×72.225 (CCD) 396.64 (IOD) [183][184] |
71,240,000 |
HiSilicon Kirin 9000s | 9,510,000,000[185] | 2023 | Huawei | 7 nm | 107 mm2 | 107,690,000 |
Apple M3 (octa-core 64-bit ARM64 SoC, SIMD, caches) | 25,000,000,000[186] | 2023 | Apple | 3 nm | ? | ? |
Apple M3 Pro (dodeca-core 64-bit ARM64 SoC, SIMD, caches) | 37,000,000,000[186] | 2023 | Apple | 3 nm | ? | ? |
Apple M3 Max (hexadeca-core 64-bit ARM64 SoC, SIMD, caches) | 92,000,000,000[186] | 2023 | Apple | 3 nm | ? | ? |
Apple A17 | 19,000,000,000 [187] |
2023 | Apple | 3 nm | 103.8 mm2 | 183,044,315 |
Sapphire Rapids quad-chip module (up to 60 cores and 112.5 MB of cache)[188] | 44,000,000,000– 48,000,000,000[189] |
2023 | Intel | 10 nm ESF (Intel 7) | 1,600 mm2 | 27,500,000– 30,000,000 |
Apple M2 Pro (12-core 64-bit ARM64 SoC, SIMD, caches) | 40,000,000,000[190] | 2023 | Apple | 5 nm | ? | ? |
Apple M2 Max (12-core 64-bit ARM64 SoC, SIMD, caches) | 67,000,000,000[190] | 2023 | Apple | 5 nm | ? | ? |
Apple M2 Ultra (two M2 Max dies) | 134,000,000,000[7] | 2023 | Apple | 5 nm | ? | ? |
AMD Epyc Bergamo (4th gen/97X4 series) 9-chip module (up to 128 cores and 256 MB (L3) + 128 MB (L2) cache) | 82,000,000,000[191] | 2023 | AMD | 5 nm (CCD) 6 nm (IOD) |
? | ? |
AMD Instinct MI300A (multi-chip module, 24 cores, 128 GB GPU memory + 256 MB (LLC/L3) cache) | 146,000,000,000[192][193] | 2023 | AMD | 5 nm (CCD, GCD) 6 nm (IOD) |
1,017 mm2 | ? |
Processor | Transistor count | Year | Designer | Process (nm) |
Area (mm2) | Transistor density (tr./mm2) |
GPUs
A graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate the building of images in a frame buffer intended for output to a display.
The designer refers to the technology company that designs the logic of the integrated circuit chip (such as Nvidia and AMD). The manufacturer ("Fab.") refers to the semiconductor company that fabricates the chip using its semiconductor manufacturing process at a foundry (such as TSMC and Samsung Semiconductor). The transistor count in a chip is dependent on a manufacturer's fabrication process, with smaller semiconductor nodes typically enabling higher transistor density and thus higher transistor counts.
The random-access memory (RAM) that comes with GPUs (such as VRAM, SGRAM or HBM) greatly increases the total transistor count, with the memory typically accounting for the majority of transistors in a graphics card. For example, Nvidia's Tesla P100 has 15 billion FinFETs (16 nm) in the GPU in addition to 16 GB of HBM2 memory, totaling about 150 billion MOSFETs on the graphics card.[194] The following table does not include the memory. For memory transistor counts, see the Memory section below.
Processor | Transistor count | Year | Designer(s) | Fab(s) | Process | Area | Transistor density (tr./mm2) |
Ref |
---|---|---|---|---|---|---|---|---|
μPD7220 GDC | 40,000 | 1982 | NEC | NEC | 5,000 nm | ? | ? | [195] |
ARTC HD63484 | 60,000 | 1984 | Hitachi | Hitachi | ? | ? | ? | [196] |
CBM Agnus | 21,000 | 1985 | Commodore | CSG | 5,000 nm | ? | ? | [197][198] |
YM7101 VDP | 100,000 | 1988 | Yamaha, Sega | Yamaha | ? | ? | ? | [199] |
Tom & Jerry | 750,000 | 1993 | Flare | IBM | ? | ? | ? | [199] |
VDP1 | 1,000,000 | 1994 | Sega | Hitachi | 500 nm | ? | ? | [200][201] |
Sony GPU | 1,000,000 | 1994 | Toshiba | LSI | 500 nm | ? | ? | [202][203][204] |
NV1 | 1,000,000 | 1995 | Nvidia, Sega | SGS | 500 nm | 90 mm2 | 11,000 | [200] |
Reality Coprocessor | 2,600,000 | 1996 | SGI | NEC | 350 nm | 81 mm2 | 32,100 | [205] |
PowerVR | 1,200,000 | 1996 | VideoLogic | NEC | 350 nm | ? | ? | [206] |
Voodoo Graphics | 1,000,000 | 1996 | 3dfx | TSMC | 500 nm | ? | ? | [207][208] |
Voodoo Rush | 1,000,000 | 1997 | 3dfx | TSMC | 500 nm | ? | ? | [207][208] |
NV3 | 3,500,000 | 1997 | Nvidia | SGS, TSMC | 350 nm | 90 mm2 | 38,900 | [209][210] |
i740 | 3,500,000 | 1998 | Intel, Real3D | Real3D | 350 nm | ? | ? | [207][208] |
Voodoo 2 | 4,000,000 | 1998 | 3dfx | TSMC | 350 nm | ? | ? | |
Voodoo Rush | 4,000,000 | 1998 | 3dfx | TSMC | 350 nm | ? | ? | |
NV4 | 7,000,000 | 1998 | Nvidia | TSMC | 350 nm | 90 mm2 | 78,000 | [207][210] |
PowerVR2 CLX2 | 10,000,000 | 1998 | VideoLogic | NEC | 250 nm | 116 mm2 | 86,200 | [211][212][213][214] |
PowerVR2 PMX1 | 6,000,000 | 1999 | VideoLogic | NEC | 250 nm | ? | ? | [215] |
Rage 128 | 8,000,000 | 1999 | ATI | TSMC, UMC | 250 nm | 70 mm2 | 114,000 | [208] |
Voodoo 3 | 8,100,000 | 1999 | 3dfx | TSMC | 250 nm | ? | ? | [216] |
Graphics Synthesizer | 43,000,000 | 1999 | Sony, Toshiba | Sony, Toshiba | 180 nm | 279 mm2 | 154,000 | [65][217][218][64] |
NV5 | 15,000,000 | 1999 | Nvidia | TSMC | 250 nm | 90 mm2 | 167,000 | [208] |
NV10 | 17,000,000 | 1999 | Nvidia | TSMC | 220 nm | 111 mm2 | 153,000 | [219][210] |
NV11 | 20,000,000 | 2000 | Nvidia | TSMC | 180 nm | 65 mm2 | 308,000 | [208] |
NV15 | 25,000,000 | 2000 | Nvidia | TSMC | 180 nm | 81 mm2 | 309,000 | [208] |
Voodoo 4 | 14,000,000 | 2000 | 3dfx | TSMC | 220 nm | ? | ? | [207][208] |
Voodoo 5 | 28,000,000 | 2000 | 3dfx | TSMC | 220 nm | ? | ? | [207][208] |
R100 | 30,000,000 | 2000 | ATI | TSMC | 180 nm | 97 mm2 | 309,000 | [208] |
Flipper | 51,000,000 | 2000 | ArtX | NEC | 180 nm | 106 mm2 | 481,000 | [65][220] |
PowerVR3 KYRO | 14,000,000 | 2001 | Imagination | ST | 250 nm | ? | ? | [207][208] |
PowerVR3 KYRO II | 15,000,000 | 2001 | Imagination | ST | 180 nm | |||
NV2A | 60,000,000 | 2001 | Nvidia | TSMC | 150 nm | ? | ? | [207][221] |
NV20 | 57,000,000 | 2001 | Nvidia | TSMC | 150 nm | 128 mm2 | 445,000 | [208] |
NV25 | 63,000,000 | 2002 | Nvidia | TSMC | 150 nm | 142 mm2 | 444,000 | |
NV28 | 36,000,000 | 2002 | Nvidia | TSMC | 150 nm | 101 mm2 | 356,000 | |
NV17/18 | 29,000,000 | 2002 | Nvidia | TSMC | 150 nm | 65 mm2 | 446,000 | |
R200 | 60,000,000 | 2001 | ATI | TSMC | 150 nm | 68 mm2 | 882,000 | |
R300 | 107,000,000 | 2002 | ATI | TSMC | 150 nm | 218 mm2 | 490,800 | |
R360 | 117,000,000 | 2003 | ATI | TSMC | 150 nm | 218 mm2 | 536,700 | |
NV34 | 45,000,000 | 2003 | Nvidia | TSMC | 150 nm | 124 mm2 | 363,000 | |
NV34b | 45,000,000 | 2004 | Nvidia | TSMC | 140 nm | 91 mm2 | 495,000 | |
NV30 | 125,000,000 | 2003 | Nvidia | TSMC | 130 nm | 199 mm2 | 628,000 | |
NV31 | 80,000,000 | 2003 | Nvidia | TSMC | 130 nm | 121 mm2 | 661,000 | |
NV35/38 | 135,000,000 | 2003 | Nvidia | TSMC | 130 nm | 207 mm2 | 652,000 | |
NV36 | 82,000,000 | 2003 | Nvidia | IBM | 130 nm | 133 mm2 | 617,000 | |
R480 | 160,000,000 | 2004 | ATI | TSMC | 130 nm | 297 mm2 | 538,700 | |
NV40 | 222,000,000 | 2004 | Nvidia | IBM | 130 nm | 305 mm2 | 727,900 | |
NV44 | 75,000,000 | 2004 | Nvidia | IBM | 130 nm | 110 mm2 | 681,800 | |
NV41 | 222,000,000 | 2005 | Nvidia | TSMC | 110 nm | 225 mm2 | 986,700 | [208] |
NV42 | 198,000,000 | 2005 | Nvidia | TSMC | 110 nm | 222 mm2 | 891,900 | |
NV43 | 146,000,000 | 2005 | Nvidia | TSMC | 110 nm | 154 mm2 | 948,100 | |
G70 | 303,000,000 | 2005 | Nvidia | TSMC, Chartered | 110 nm | 333 mm2 | 909,900 | |
Xenos | 232,000,000 | 2005 | ATI | TSMC | 90 nm | 182 mm2 | 1,275,000 | [222][223] |
RSX Reality Synthesizer | 300,000,000 | 2005 | Nvidia, Sony | Sony | 90 nm | 186 mm2 | 1,613,000 | [224][225] |
R520 | 321,000,000 | 2005 | ATI | TSMC | 90 nm | 288 mm2 | 1,115,000 | [208] |
RV530 | 157,000,000 | 2005 | ATI | TSMC | 90 nm | 150 mm2 | 1,047,000 | |
RV515 | 107,000,000 | 2005 | ATI | TSMC | 90 nm | 100 mm2 | 1,070,000 | |
R580 | 384,000,000 | 2006 | ATI | TSMC | 90 nm | 352 mm2 | 1,091,000 | |
G71 | 278,000,000 | 2006 | Nvidia | TSMC | 90 nm | 196 mm2 | 1,418,000 | |
G72 | 112,000,000 | 2006 | Nvidia | TSMC | 90 nm | 81 mm2 | 1,383,000 | |
G73 | 177,000,000 | 2006 | Nvidia | TSMC | 90 nm | 125 mm2 | 1,416,000 | |
G80 | 681,000,000 | 2006 | Nvidia | TSMC | 90 nm | 480 mm2 | 1,419,000 | |
G86 Tesla | 210,000,000 | 2007 | Nvidia | TSMC | 80 nm | 127 mm2 | 1,654,000 | |
G84 Tesla | 289,000,000 | 2007 | Nvidia | TSMC | 80 nm | 169 mm2 | 1,710,000 | |
RV560 | 330,000,000 | 2006 | ATI | TSMC | 80 nm | 230 mm2 | 1,435,000 | |
R600 | 700,000,000 | 2007 | ATI | TSMC | 80 nm | 420 mm2 | 1,667,000 | |
RV610 | 180,000,000 | 2007 | ATI | TSMC | 65 nm | 85 mm2 | 2,118,000 | [208] |
RV630 | 390,000,000 | 2007 | ATI | TSMC | 65 nm | 153 mm2 | 2,549,000 | |
G92 | 754,000,000 | 2007 | Nvidia | TSMC, UMC | 65 nm | 324 mm2 | 2,327,000 | |
G94 Tesla | 505,000,000 | 2008 | Nvidia | TSMC | 65 nm | 240 mm2 | 2,104,000 | |
G96 Tesla | 314,000,000 | 2008 | Nvidia | TSMC | 65 nm | 144 mm2 | 2,181,000 | |
G98 Tesla | 210,000,000 | 2008 | Nvidia | TSMC | 65 nm | 86 mm2 | 2,442,000 | |
GT200[226] | 1,400,000,000 | 2008 | Nvidia | TSMC | 65 nm | 576 mm2 | 2,431,000 | |
RV620 | 181,000,000 | 2008 | ATI | TSMC | 55 nm | 67 mm2 | 2,701,000 | [208] |
RV635 | 378,000,000 | 2008 | ATI | TSMC | 55 nm | 135 mm2 | 2,800,000 | |
RV710 | 242,000,000 | 2008 | ATI | TSMC | 55 nm | 73 mm2 | 3,315,000 | |
RV730 | 514,000,000 | 2008 | ATI | TSMC | 55 nm | 146 mm2 | 3,521,000 | |
RV670 | 666,000,000 | 2008 | ATI | TSMC | 55 nm | 192 mm2 | 3,469,000 | |
RV770 | 956,000,000 | 2008 | ATI | TSMC | 55 nm | 256 mm2 | 3,734,000 | |
RV790 | 959,000,000 | 2008 | ATI | TSMC | 55 nm | 282 mm2 | 3,401,000 | [227][208] |
G92b Tesla | 754,000,000 | 2008 | Nvidia | TSMC, UMC | 55 nm | 260 mm2 | 2,900,000 | [208] |
G94b Tesla | 505,000,000 | 2008 | Nvidia | TSMC, UMC | 55 nm | 196 mm2 | 2,577,000 | |
G96b Tesla | 314,000,000 | 2008 | Nvidia | TSMC, UMC | 55 nm | 121 mm2 | 2,595,000 | |
GT200b Tesla | 1,400,000,000 | 2008 | Nvidia | TSMC, UMC | 55 nm | 470 mm2 | 2,979,000 | |
GT218 Tesla | 260,000,000 | 2009 | Nvidia | TSMC | 40 nm | 57 mm2 | 4,561,000 | [208] |
GT216 Tesla | 486,000,000 | 2009 | Nvidia | TSMC | 40 nm | 100 mm2 | 4,860,000 | |
GT215 Tesla | 727,000,000 | 2009 | Nvidia | TSMC | 40 nm | 144 mm2 | 5,049,000 | |
RV740 | 826,000,000 | 2009 | ATI | TSMC | 40 nm | 137 mm2 | 6,029,000 | |
Cypress RV870 | 2,154,000,000 | 2009 | ATI | TSMC | 40 nm | 334 mm2 | 6,449,000 | |
Juniper RV840 | 1,040,000,000 | 2009 | ATI | TSMC | 40 nm | 166 mm2 | 6,265,000 | |
Redwood RV830 | 627,000,000 | 2010 | AMD (ATI) | TSMC | 40 nm | 104 mm2 | 6,029,000 | [208] |
Cedar RV810 | 292,000,000 | 2010 | AMD | TSMC | 40 nm | 59 mm2 | 4,949,000 | |
Cayman RV970 | 2,640,000,000 | 2010 | AMD | TSMC | 40 nm | 389 mm2 | 6,789,000 | |
Barts RV940 | 1,700,000,000 | 2010 | AMD | TSMC | 40 nm | 255 mm2 | 6,667,000 | |
Turks RV930 | 716,000,000 | 2011 | AMD | TSMC | 40 nm | 118 mm2 | 6,068,000 | |
Caicos RV910 | 370,000,000 | 2011 | AMD | TSMC | 40 nm | 67 mm2 | 5,522,000 | |
GF100 Fermi | 3,200,000,000 | 2010 | Nvidia | TSMC | 40 nm | 526 mm2 | 6,084,000 | [228] |
GF110 Fermi | 3,000,000,000 | 2010 | Nvidia | TSMC | 40 nm | 520 mm2 | 5,769,000 | [228] |
GF104 Fermi | 1,950,000,000 | 2011 | Nvidia | TSMC | 40 nm | 332 mm2 | 5,873,000 | [208] |
GF106 Fermi | 1,170,000,000 | 2010 | Nvidia | TSMC | 40 nm | 238 mm2 | 4,916,000 | [208] |
GF108 Fermi | 585,000,000 | 2011 | Nvidia | TSMC | 40 nm | 116 mm2 | 5,043,000 | [208] |
GF119 Fermi | 292,000,000 | 2011 | Nvidia | TSMC | 40 nm | 79 mm2 | 3,696,000 | [208] |
Tahiti GCN1 | 4,312,711,873 | 2011 | AMD | TSMC | 28 nm | 365 mm2 | 11,820,000 | [229] |
Cape Verde GCN1 | 1,500,000,000 | 2012 | AMD | TSMC | 28 nm | 123 mm2 | 12,200,000 | [208] |
Pitcairn GCN1 | 2,800,000,000 | 2012 | AMD | TSMC | 28 nm | 212 mm2 | 13,210,000 | [208] |
GK110 Kepler | 7,080,000,000 | 2012 | Nvidia | TSMC | 28 nm | 561 mm2 | 12,620,000 | [230][231] |
GK104 Kepler | 3,540,000,000 | 2012 | Nvidia | TSMC | 28 nm | 294 mm2 | 12,040,000 | [232] |
GK106 Kepler | 2,540,000,000 | 2012 | Nvidia | TSMC | 28 nm | 221 mm2 | 11,490,000 | [208] |
GK107 Kepler | 1,270,000,000 | 2012 | Nvidia | TSMC | 28 nm | 118 mm2 | 10,760,000 | [208] |
GK208 Kepler | 1,020,000,000 | 2013 | Nvidia | TSMC | 28 nm | 79 mm2 | 12,910,000 | [208] |
Oland GCN1 | 1,040,000,000 | 2013 | AMD | TSMC | 28 nm | 90 mm2 | 11,560,000 | [208] |
Bonaire GCN2 | 2,080,000,000 | 2013 | AMD | TSMC | 28 nm | 160 mm2 | 13,000,000 | |
Durango (Xbox One) | 4,800,000,000 | 2013 | AMD | TSMC | 28 nm | 375 mm2 | 12,800,000 | [233][234] |
Liverpool (PlayStation 4) | ? | 2013 | AMD | TSMC | 28 nm | 348 mm2 | ? | [235] |
Hawaii GCN2 | 6,300,000,000 | 2013 | AMD | TSMC | 28 nm | 438 mm2 | 14,380,000 | [208] |
GM200 Maxwell | 8,000,000,000 | 2015 | Nvidia | TSMC | 28 nm | 601 mm2 | 13,310,000 | |
GM204 Maxwell | 5,200,000,000 | 2014 | Nvidia | TSMC | 28 nm | 398 mm2 | 13,070,000 | |
GM206 Maxwell | 2,940,000,000 | 2014 | Nvidia | TSMC | 28 nm | 228 mm2 | 12,890,000 | |
GM107 Maxwell | 1,870,000,000 | 2014 | Nvidia | TSMC | 28 nm | 148 mm2 | 12,640,000 | |
Tonga GCN3 | 5,000,000,000 | 2014 | AMD | TSMC, GlobalFoundries | 28 nm | 366 mm2 | 13,660,000 | |
Fiji GCN3 | 8,900,000,000 | 2015 | AMD | TSMC | 28 nm | 596 mm2 | 14,930,000 | |
Durango 2 (Xbox One S) | 5,000,000,000 | 2016 | AMD | TSMC | 16 nm | 240 mm2 | 20,830,000 | [236] |
Neo (PlayStation 4 Pro) | 5,700,000,000 | 2016 | AMD | TSMC | 16 nm | 325 mm2 | 17,540,000 | [237] |
Ellesmere/Polaris 10 GCN4 | 5,700,000,000 | 2016 | AMD | Samsung, GlobalFoundries | 14 nm | 232 mm2 | 24,570,000 | [238] |
Baffin/Polaris 11 GCN4 | 3,000,000,000 | 2016 | AMD | Samsung, GlobalFoundries | 14 nm | 123 mm2 | 24,390,000 | [208][239] |
Lexa/Polaris 12 GCN4 | 2,200,000,000 | 2017 | AMD | Samsung, GlobalFoundries | 14 nm | 101 mm2 | 21,780,000 | [208][239] |
GP100 Pascal | 15,300,000,000 | 2016 | Nvidia | TSMC, Samsung | 16 nm | 610 mm2 | 25,080,000 | [240][241] |
GP102 Pascal | 11,800,000,000 | 2016 | Nvidia | TSMC, Samsung | 16 nm | 471 mm2 | 25,050,000 | [208][241] |
GP104 Pascal | 7,200,000,000 | 2016 | Nvidia | TSMC | 16 nm | 314 mm2 | 22,930,000 | [208][241] |
GP106 Pascal | 4,400,000,000 | 2016 | Nvidia | TSMC | 16 nm | 200 mm2 | 22,000,000 | [208][241] |
GP107 Pascal | 3,300,000,000 | 2016 | Nvidia | Samsung | 14 nm | 132 mm2 | 25,000,000 | [208][241] |
GP108 Pascal | 1,850,000,000 | 2017 | Nvidia | Samsung | 14 nm | 74 mm2 | 25,000,000 | [208][241] |
Scorpio (Xbox One X) | 6,600,000,000 | 2017 | AMD | TSMC | 16 nm | 367 mm2 | 17,980,000 | [233][242] |
Vega 10 GCN5 | 12,500,000,000 | 2017 | AMD | Samsung, GlobalFoundries | 14 nm | 484 mm2 | 25,830,000 | [243] |
GV100 Volta | 21,100,000,000 | 2017 | Nvidia | TSMC | 12 nm | 815 mm2 | 25,890,000 | [244] |
TU102 Turing | 18,600,000,000 | 2018 | Nvidia | TSMC | 12 nm | 754 mm2 | 24,670,000 | [245] |
TU104 Turing | 13,600,000,000 | 2018 | Nvidia | TSMC | 12 nm | 545 mm2 | 24,950,000 | |
TU106 Turing | 10,800,000,000 | 2018 | Nvidia | TSMC | 12 nm | 445 mm2 | 24,270,000 | |
TU116 Turing | 6,600,000,000 | 2019 | Nvidia | TSMC | 12 nm | 284 mm2 | 23,240,000 | [246] |
TU117 Turing | 4,700,000,000 | 2019 | Nvidia | TSMC | 12 nm | 200 mm2 | 23,500,000 | [247] |
Vega 20 GCN5 | 13,230,000,000 | 2018 | AMD | TSMC | 7 nm | 331 mm2 | 39,970,000 | [208] |
Navi 10 RDNA | 10,300,000,000 | 2019 | AMD | TSMC | 7 nm | 251 mm2 | 41,040,000 | [248] |
Navi 12 RDNA | ? | 2020 | AMD | TSMC | 7 nm | ? | ? | |
Navi 14 RDNA | 6,400,000,000 | 2019 | AMD | TSMC | 7 nm | 158 mm2 | 40,510,000 | [249] |
Arcturus CDNA | 25,600,000,000 | 2020 | AMD | TSMC | 7 nm | 750 mm2 | 34,100,000 | [250] |
GA100 Ampere | 54,200,000,000 | 2020 | Nvidia | TSMC | 7 nm | 826 mm2 | 65,620,000 | [251][252] |
GA102 Ampere | 28,300,000,000 | 2020 | Nvidia | Samsung | 8 nm | 628 mm2 | 45,035,000 | [253][254] |
GA103 Ampere | 22,000,000,000 | 2022 | Nvidia | Samsung | 8 nm | 496 mm2 | 44,400,000 | [255] |
GA104 Ampere | 17,400,000,000 | 2020 | Nvidia | Samsung | 8 nm | 392 mm2 | 44,390,000 | [256] |
GA106 Ampere | 12,000,000,000 | 2021 | Nvidia | Samsung | 8 nm | 276 mm2 | 43,480,000 | [257] |
GA107 Ampere | 8,700,000,000 | 2021 | Nvidia | Samsung | 8 nm | 200 mm2 | 43,500,000 | [258] |
Navi 21 RDNA2 | 26,800,000,000 | 2020 | AMD | TSMC | 7 nm | 520 mm2 | 51,540,000 | |
Navi 22 RDNA2 | 17,200,000,000 | 2021 | AMD | TSMC | 7 nm | 335 mm2 | 51,340,000 | |
Navi 23 RDNA2 | 11,060,000,000 | 2021 | AMD | TSMC | 7 nm | 237 mm2 | 46,670,000 | |
Navi 24 RDNA2 | 5,400,000,000 | 2022 | AMD | TSMC | 6 nm | 107 mm2 | 50,470,000 | |
Aldebaran CDNA2 | 58,200,000,000 (MCM) | 2021 | AMD | TSMC | 6 nm | 1448–1474 mm2[259] 1480 mm2[260] 1490–1580 mm2[261] |
39,500,000–40,200,000 39,200,000 36,800,000–39,100,000 |
[262] |
GH100 Hopper | 80,000,000,000 | 2022 | Nvidia | TSMC | 4 nm | 814 mm2 | 98,280,000 | [263] |
AD102 Ada Lovelace | 76,300,000,000 | 2022 | Nvidia | TSMC | 4 nm | 608.4 mm2 | 125,411,000 | [264] |
AD103 Ada Lovelace | 45,900,000,000 | 2022 | Nvidia | TSMC | 4 nm | 378.6 mm2 | 121,240,000 | [265] |
AD104 Ada Lovelace | 35,800,000,000 | 2022 | Nvidia | TSMC | 4 nm | 294.5 mm2 | 121,560,000 | [265] |
AD106 Ada Lovelace | ? | 2023 | Nvidia | TSMC | 4 nm | 190 mm2 | ? | [266][267] |
AD107 Ada Lovelace | ? | 2023 | Nvidia | TSMC | 4 nm | 146 mm2 | ? | [266][268] |
Navi 31 RDNA3 | 57,700,000,000 (MCM) 45,400,000,000 (GCD) 6×2,050,000,000 (MCD) |
2022 | AMD | TSMC | 5 nm (GCD) 6 nm (MCD) |
531 mm2 (MCM) 306 mm2 (GCD) 6×37.5 mm2 (MCD) |
109,200,000 (MCM) 132,400,000 (GCD) 54,640,000 (MCD) |
[269][270][271] |
Navi 32 RDNA3 | 28,100,000,000 (MCM) | 2023 | AMD | TSMC | 5 nm (GCD) 6 nm (MCD) |
350 mm2 (MCM) 200 mm2 (GCD) 4×37.5 mm2 (MCD) |
80,200,000 (MCM) | [272] |
Navi 33 RDNA3 | 13,300,000,000 | 2023 | AMD | TSMC | 6 nm | 204 mm2 | 65,200,000 | [273] |
Aqua Vanjaram CDNA3 | 153,000,000,000 (MCM) | 2023 | AMD | TSMC | 5 nm (GCD) 6 nm (MCD) |
? | ? | [274][275] |
Processor | Transistor count | Year | Designer(s) | Fab(s) | MOS process | Area | Transistor density (tr./mm2) |
Ref |
FPGA
A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing.
FPGA | Transistor count | Date of introduction | Designer | Manufacturer | Process | Area | Transistor density, tr./mm2 | Ref |
---|---|---|---|---|---|---|---|---|
Virtex | 70,000,000 | 1997 | Xilinx | |||||
Virtex-E | 200,000,000 | 1998 | Xilinx | |||||
Virtex-II | 350,000,000 | 2000 | Xilinx | 130 nm | ||||
Virtex-II PRO | 430,000,000 | 2002 | Xilinx | |||||
Virtex-4 | 1,000,000,000 | 2004 | Xilinx | 90 nm | ||||
Virtex-5 | 1,100,000,000 | 2006 | Xilinx | TSMC | 65 nm | [276] | ||
Stratix IV | 2,500,000,000 | 2008 | Altera | TSMC | 40 nm | [277] | ||
Stratix V | 3,800,000,000 | 2011 | Altera | TSMC | 28 nm | [278] | ||
Arria 10 | 5,300,000,000 | 2014 | Altera | TSMC | 20 nm | [279] | ||
Virtex-7 2000T | 6,800,000,000 | 2011 | Xilinx | TSMC | 28 nm | [280] | ||
Stratix 10 SX 2800 | 17,000,000,000 | TBD | Intel | Intel | 14 nm | 560 mm2 | 30,400,000 | [281][282] |
Virtex-Ultrascale VU440 | 20,000,000,000 | Q1 2015 | Xilinx | TSMC | 20 nm | [283][284] | ||
Virtex-Ultrascale+ VU19P | 35,000,000,000 | 2020 | Xilinx | TSMC | 16 nm | 900 mm2 [lower-alpha 6] | 38,900,000 | [285][286][287] |
Versal VC1902 | 37,000,000,000 | 2H 2019 | Xilinx | TSMC | 7 nm | [288][289][290] | ||
Stratix 10 GX 10M | 43,300,000,000 | Q4 2019 | Intel | Intel | 14 nm | 1,400 mm2 [lower-alpha 6] | 30,930,000 | [291][292] |
Versal VP1802 | 92,000,000,000 | 2021 ?[lower-alpha 7] | Xilinx | TSMC | 7 nm | [293][294] |
Memory
Semiconductor memory is an electronic data storage device, often used as computer memory, implemented on integrated circuits. Nearly all semiconductor memories since the 1970s have used MOSFETs (MOS transistors), replacing earlier bipolar junction transistors. There are two major types of semiconductor memory: random-access memory (RAM) and non-volatile memory (NVM). In turn, there are two major RAM types: dynamic random-access memory (DRAM) and static random-access memory (SRAM), as well as two major NVM types: flash memory and read-only memory (ROM).
Typical CMOS SRAM consists of six transistors per cell. For DRAM, 1T1C, which means one transistor and one capacitor structure, is common. Capacitor charged or not[clarification needed] is used to store 1 or 0. In flash memory, the data is stored in floating gates, and the resistance of the transistor is sensed[clarification needed] to interpret the data stored. Depending on how fine scale the resistance could be separated[clarification needed], one transistor could store up to three bits, meaning eight distinctive levels of resistance possible per transistor. However, a finer scale comes with the cost of repeatability issues, and hence reliability. Typically, low grade 2-bits MLC flash is used for flash drives, so a 16 GB flash drive contains roughly 64 billion transistors.
For SRAM chips, six-transistor cells (six transistors per bit) was the standard.[295] DRAM chips during the early 1970s had three-transistor cells (three transistors per bit), before single-transistor cells (one transistor per bit) became standard since the era of 4 Kb DRAM in the mid-1970s.[296][297] In single-level flash memory, each cell contains one floating-gate MOSFET (one transistor per bit),[298] whereas multi-level flash contains 2, 3 or 4 bits per transistor.
Flash memory chips are commonly stacked up in layers, up to 128-layer in production,[299] and 136-layer managed,[300] and available in end-user devices up to 69-layer from manufacturers.
Chip name | Capacity (bits) | RAM type | Transistor count | Date of introduction | Manufacturer(s) | Process | Area | Transistor density (tr./mm2) |
Ref |
---|---|---|---|---|---|---|---|---|---|
N/A | 1-bit | SRAM (cell) | 6 | 1963 | Fairchild | N/A | N/A | ? | [301] |
N/A | 1-bit | DRAM (cell) | 1 | 1965 | Toshiba | N/A | N/A | ? | [302][303] |
? | 8-bit | SRAM (bipolar) | 48 | 1965 | SDS, Signetics | ? | ? | ? | [301] |
SP95 | 16-bit | SRAM (bipolar) | 80 | 1965 | IBM | ? | ? | ? | [304] |
TMC3162 | 16-bit | SRAM (TTL) | 96 | 1966 | Transitron | N/A | ? | ? | [297] |
? | ? | SRAM (MOS) | ? | 1966 | NEC | ? | ? | ? | [296] |
256-bit | DRAM (IC) | 256 | 1968 | Fairchild | ? | ? | ? | [297] | |
64-bit | SRAM (PMOS) | 384 | 1968 | Fairchild | ? | ? | ? | [296] | |
144-bit | SRAM (NMOS) | 864 | 1968 | NEC | |||||
1101 | 256-bit | SRAM (PMOS) | 1,536 | 1969 | Intel | 12,000 nm | ? | ? | [305][306][307] |
1102 | 1 Kb | DRAM (PMOS) | 3,072 | 1970 | Intel, Honeywell | ? | ? | ? | [296] |
1103 | 1 Kb | DRAM (PMOS) | 3,072 | 1970 | Intel | 8,000 nm | 10 mm2 | 307 | [308][295][309][297] |
μPD403 | 1 Kb | DRAM (NMOS) | 3,072 | 1971 | NEC | ? | ? | ? | [310] |
? | 2 Kb | DRAM (PMOS) | 6,144 | 1971 | General Instrument | ? | 12.7 mm2 | 484 | [311] |
2102 | 1 Kb | SRAM (NMOS) | 6,144 | 1972 | Intel | ? | ? | ? | [305][312] |
? | 8 Kb | DRAM (PMOS) | 8,192 | 1973 | IBM | ? | 18.8 mm2 | 436 | [311] |
5101 | 1 Kb | SRAM (CMOS) | 6,144 | 1974 | Intel | ? | ? | ? | [305] |
2116 | 16 Kb | DRAM (NMOS) | 16,384 | 1975 | Intel | ? | ? | ? | [313][297] |
2114 | 4 Kb | SRAM (NMOS) | 24,576 | 1976 | Intel | ? | ? | ? | [305][314] |
? | 4 Kb | SRAM (CMOS) | 24,576 | 1977 | Toshiba | ? | ? | ? | [306] |
64 Kb | DRAM (NMOS) | 65,536 | 1977 | NTT | ? | 35.4 mm2 | 1851 | [311] | |
DRAM (VMOS) | 65,536 | 1979 | Siemens | ? | 25.2 mm2 | 2601 | [311] | ||
16 Kb | SRAM (CMOS) | 98,304 | 1980 | Hitachi, Toshiba | ? | ? | ? | [315] | |
256 Kb | DRAM (NMOS) | 262,144 | 1980 | NEC | 1,500 nm | 41.6 mm2 | 6302 | [311] | |
NTT | 1,000 nm | 34.4 mm2 | 7620 | [311] | |||||
64 Kb | SRAM (CMOS) | 393,216 | 1980 | Matsushita | ? | ? | ? | [315] | |
288 Kb | DRAM | 294,912 | 1981 | IBM | ? | 25 mm2 | 11,800 | [316] | |
64 Kb | SRAM (NMOS) | 393,216 | 1982 | Intel | 1,500 nm | ? | ? | [315] | |
256 Kb | SRAM (CMOS) | 1,572,864 | 1984 | Toshiba | 1,200 nm | ? | ? | [315][307] | |
8 Mb | DRAM | 8,388,608 | 1984 January 5, 1984
|
Hitachi | ? | ? | ? | [317][318] | |
16 Mb | DRAM (CMOS) | 16,777,216 | 1987 | NTT | 700 nm | 148 mm2 | 113,400 | [311] | |
4 Mb | SRAM (CMOS) | 25,165,824 | 1990 | NEC, Toshiba, Hitachi, Mitsubishi | ? | ? | ? | [315] | |
64 Mb | DRAM (CMOS) | 67,108,864 | 1991 | Matsushita, Mitsubishi, Fujitsu, Toshiba | 400 nm | ||||
KM48SL2000 | 16 Mb | SDRAM | 16,777,216 | 1992 | Samsung | ? | ? | ? | [319][320] |
? | 16 Mb | SRAM (CMOS) | 100,663,296 | 1992 | Fujitsu, NEC | 400 nm | ? | ? | [315] |
256 Mb | DRAM (CMOS) | 268,435,456 | 1993 | Hitachi, NEC | 250 nm | ||||
1 Gb | DRAM | 1,073,741,824 | 1995 January 9, 1995
|
NEC | 250 nm | ? | ? | [321][322] | |
Hitachi | 160 nm | ? | ? | ||||||
SDRAM | 1,073,741,824 | 1996 | Mitsubishi | 150 nm | ? | ? | [315] | ||
SDRAM (SOI) | 1,073,741,824 | 1997 | Hyundai | ? | ? | ? | [323] | ||
4 Gb | DRAM (4-bit) | 1,073,741,824 | 1997 | NEC | 150 nm | ? | ? | [315] | |
DRAM | 4,294,967,296 | 1998 | Hyundai | ? | ? | ? | [323] | ||
8 Gb | SDRAM (DDR3) | 8,589,934,592 | 2008 April 2008
|
Samsung | 50 nm | ? | ? | [324] | |
16 Gb | SDRAM (DDR3) | 17,179,869,184 | 2008 | ||||||
32 Gb | SDRAM (HBM2) | 34,359,738,368 | 2016 | Samsung | 20 nm | ? | ? | [325] | |
64 Gb | SDRAM (HBM2) | 68,719,476,736 | 2017 | ||||||
128 Gb | SDRAM (DDR4) | 137,438,953,472 | 2018 | Samsung | 10 nm | ? | ? | [326] | |
? | RRAM[327] (3DSoC)[328] | ? | 2019 | SkyWater Technology[329] | 90 nm | ? | ? |
Chip name | Capacity (bits) | Flash type | FGMOS transistor count | Date of introduction | Manufacturer(s) | Process | Area | Transistor density (tr./mm2) |
Ref |
---|---|---|---|---|---|---|---|---|---|
? | 256 Kb | NOR | 262,144 | 1985 | Toshiba | 2,000 nm | ? | ? | [315] |
1 Mb | NOR | 1,048,576 | 1989 | Seeq, Intel | ? | ||||
4 Mb | NAND | 4,194,304 | 1989 | Toshiba | 1,000 nm | ||||
16 Mb | NOR | 16,777,216 | 1991 | Mitsubishi | 600 nm | ||||
DD28F032SA | 32 Mb | NOR | 33,554,432 | 1993 | Intel | ? | 280 mm2 | 120,000 | [305][330] |
? | 64 Mb | NOR | 67,108,864 | 1994 | NEC | 400 nm | ? | ? | [315] |
NAND | 67,108,864 | 1996 | Hitachi | ||||||
128 Mb | NAND | 134,217,728 | 1996 | Samsung, Hitachi | ? | ||||
256 Mb | NAND | 268,435,456 | 1999 | Hitachi, Toshiba | 250 nm | ||||
512 Mb | NAND | 536,870,912 | 2000 | Toshiba | ? | ? | ? | [331] | |
1 Gb | 2-bit NAND | 536,870,912 | 2001 | Samsung | ? | ? | ? | [315] | |
Toshiba, SanDisk | 160 nm | ? | ? | [332] | |||||
2 Gb | NAND | 2,147,483,648 | 2002 | Samsung, Toshiba | ? | ? | ? | [333][334] | |
8 Gb | NAND | 8,589,934,592 | 2004 | Samsung | 60 nm | ? | ? | [333] | |
16 Gb | NAND | 17,179,869,184 | 2005 | Samsung | 50 nm | ? | ? | [335] | |
32 Gb | NAND | 34,359,738,368 | 2006 | Samsung | 40 nm | ||||
THGAM | 128 Gb | Stacked NAND | 128,000,000,000 | 2007 April 2007
|
Toshiba | 56 nm | 252 mm2 | 507,900,000 | [336] |
THGBM | 256 Gb | Stacked NAND | 256,000,000,000 | 2008 | Toshiba | 43 nm | 353 mm2 | 725,200,000 | [337] |
THGBM2 | 1 Tb | Stacked 4-bit NAND | 256,000,000,000 | 2010 | Toshiba | 32 nm | 374 mm2 | 684,500,000 | [338] |
KLMCG8GE4A | 512 Gb | Stacked 2-bit NAND | 256,000,000,000 | 2011 | Samsung | ? | 192 mm2 | 1,333,000,000 | [339] |
KLUFG8R1EM | 4 Tb | Stacked 3-bit V-NAND | 1,365,333,333,504 | 2017 | Samsung | ? | 150 mm2 | 9,102,000,000 | [340] |
eUFS (1 TB) | 8 Tb | Stacked 4-bit V-NAND | 2,048,000,000,000 | 2019 | Samsung | ? | 150 mm2 | 13,650,000,000 | [341][342] |
? | 1 Tb | 232L TLC NAND die | 333,333,333,333 | 2022 | Micron | ? | 68.5 mm2 (memory array) |
4,870,000,000 (14.6 Gbit/mm2) |
[343][344][345][346] |
? | 16 Tb | 232L package | 5,333,333,333,333 | 2022 | Micron | ? | 68.5 mm2 (memory array) |
77,900,000,000 (16×14.6 Gbit/mm2) |
Chip name | Capacity (bits) | ROM type | Transistor count | Date of introduction | Manufacturer(s) | Process | Area | Ref |
---|---|---|---|---|---|---|---|---|
? | ? | PROM | ? | 1956 | Arma | N/A | ? | [347][348] |
1 Kb | ROM (MOS) | 1,024 | 1965 | General Microelectronics | ? | ? | [349] | |
3301 | 1 Kb | ROM (bipolar) | 1,024 | 1969 | Intel | N/A | ? | [349] |
1702 | 2 Kb | EPROM (MOS) | 2,048 | 1971 | Intel | ? | 15 mm2 | [350] |
? | 4 Kb | ROM (MOS) | 4,096 | 1974 | AMD, General Instrument | ? | ? | [349] |
2708 | 8 Kb | EPROM (MOS) | 8,192 | 1975 | Intel | ? | ? | [305] |
? | 2 Kb | EEPROM (MOS) | 2,048 | 1976 | Toshiba | ? | ? | [351] |
μCOM-43 ROM | 16 Kb | PROM (PMOS) | 16,000 | 1977 | NEC | ? | ? | [352] |
2716 | 16 Kb | EPROM (TTL) | 16,384 | 1977 | Intel | N/A | ? | [308][353] |
EA8316F | 16 Kb | ROM (NMOS) | 16,384 | 1978 | Electronic Arrays | ? | 436 mm2 | [349][354] |
2732 | 32 Kb | EPROM | 32,768 | 1978 | Intel | ? | ? | [305] |
2364 | 64 Kb | ROM | 65,536 | 1978 | Intel | ? | ? | [355] |
2764 | 64 Kb | EPROM | 65,536 | 1981 | Intel | 3,500 nm | ? | [305][315] |
27128 | 128 Kb | EPROM | 131,072 | 1982 | Intel | ? | ||
27256 | 256 Kb | EPROM (HMOS) | 262,144 | 1983 | Intel | ? | ? | [305][356] |
? | 256 Kb | EPROM (CMOS) | 262,144 | 1983 | Fujitsu | ? | ? | [357] |
512 Kb | EPROM (NMOS) | 524,288 | 1984 | AMD | 1,700 nm | ? | [315] | |
27512 | 512 Kb | EPROM (HMOS) | 524,288 | 1984 | Intel | ? | ? | [305][358] |
? | 1 Mb | EPROM (CMOS) | 1,048,576 | 1984 | NEC | 1,200 nm | ? | [315] |
4 Mb | EPROM (CMOS) | 4,194,304 | 1987 | Toshiba | 800 nm | |||
16 Mb | EPROM (CMOS) | 16,777,216 | 1990 | NEC | 600 nm | |||
MROM | 16,777,216 | 1995 | AKM, Hitachi | ? | ? | [322] |
Transistor computers
Before transistors were invented, relays were used in commercial tabulating machines and experimental early computers. The world's first working programmable, fully automatic digital computer,[359] the 1941 Z3 22-bit word length computer, had 2,600 relays, and operated at a clock frequency of about 4–5 Hz. The 1940 Complex Number Computer had fewer than 500 relays,[360] but it was not fully programmable. The earliest practical computers used vacuum tubes and solid-state diode logic. ENIAC had 18,000 vacuum tubes, 7,200 crystal diodes, and 1,500 relays, with many of the vacuum tubes containing two triode elements.
The second generation of computers were transistor computers that featured boards filled with discrete transistors, solid-state diodes and magnetic memory cores. The experimental 1953 48-bit Transistor Computer, developed at the University of Manchester, is widely believed to be the first transistor computer to come into operation anywhere in the world (the prototype had 92 point-contact transistors and 550 diodes).[361] A later version the 1955 machine had a total of 250 junction transistors and 1,300 point-contact diodes. The Computer also used a small number of tubes in its clock generator, so it was not the first fully transistorized. The ETL Mark III, developed at the Electrotechnical Laboratory in 1956, may have been the first transistor-based electronic computer using the stored program method. It had about "130 point-contact transistors and about 1,800 germanium diodes were used for logic elements, and these were housed on 300 plug-in packages which could be slipped in and out."[362] The 1958 decimal architecture IBM 7070 was the first transistor computer to be fully programmable. It had about 30,000 alloy-junction germanium transistors and 22,000 germanium diodes, on approximately 14,000 Standard Modular System (SMS) cards. The 1959 MOBIDIC, short for "MOBIle DIgital Computer", at 12,000 pounds (6.0 short tons) mounted in the trailer of a semi-trailer truck, was a transistorized computer for battlefield data.
The third generation of computers used integrated circuits (ICs).[363] The 1962 15-bit Apollo Guidance Computer used "about 4,000 "Type-G" (3-input NOR gate) circuits" for about 12,000 transistors plus 32,000 resistors.[364] The IBM System/360, introduced 1964, used discrete transistors in hybrid circuit packs.[363] The 1965 12-bit PDP-8 CPU had 1409 discrete transistors and over 10,000 diodes, on many cards. Later versions, starting with the 1968 PDP-8/I, used integrated circuits. The PDP-8 was later reimplemented as a microprocessor as the Intersil 6100, see below.[365]
The next generation of computers were the microcomputers, starting with the 1971 Intel 4004, which used MOS transistors. These were used in home computers or personal computers (PCs).
This list includes early transistorized computers (second generation) and IC-based computers (third generation) from the 1950s and 1960s.
Computer | Transistor count | Year | Manufacturer | Notes | Ref |
---|---|---|---|---|---|
Transistor Computer | 92 | 1953 | University of Manchester | Point-contact transistors, 550 diodes. Lacked stored program capability. | [361] |
TRADIC | 700 | 1954 | Bell Labs | Point-contact transistors | [361] |
Transistor Computer (full size) | 250 | 1955 | University of Manchester | Discrete point-contact transistors, 1,300 diodes | [361] |
IBM 608 | 3,000 | 1955 | IBM | Germanium transistors | [366] |
ETL Mark III | 130 | 1956 | Electrotechnical Laboratory | Point-contact transistors, 1,800 diodes, stored program capability | [361][362] |
Metrovick 950 | 200 | 1956 | Metropolitan-Vickers | Discrete junction transistors | |
NEC NEAC-2201 | 600 | 1958 | NEC | Germanium transistors | [367] |
Hitachi MARS-1 | 1,000 | 1958 | Hitachi | [368] | |
IBM 7070 | 30,000 | 1958 | IBM | Alloy-junction germanium transistors, 22,000 diodes | [369] |
Matsushita MADIC-I | 400 | 1959 | Matsushita | Bipolar transistors | [370] |
NEC NEAC-2203 | 2,579 | 1959 | NEC | [371] | |
Toshiba TOSBAC-2100 | 5,000 | 1959 | Toshiba | [372] | |
IBM 7090 | 50,000 | 1959 | IBM | Discrete germanium transistors | [373] |
PDP-1 | 2,700 | 1959 | Digital Equipment Corporation | Discrete transistors | |
Olivetti Elea 9003 | ? | 1959 | Olivetti | 300,000 (?) discrete transistors and diodes | [374] |
Mitsubishi MELCOM 1101 | 3,500 | 1960 | Mitsubishi | Germanium transistors | [375] |
M18 FADAC | 1,600 | 1960 | Autonetics | Discrete transistors | |
CPU of IBM 7030 Stretch | 169,100 | 1961 | IBM | World's fastest computer from 1961 to 1964 | [376] |
D-17B | 1,521 | 1962 | Autonetics | Discrete transistors | |
NEC NEAC-L2 | 16,000 | 1964 | NEC | Ge transistors | [377] |
CDC 6600 (entire computer) | 400,000 | 1964 | Control Data Corporation | World's fastest computer from 1964 to 1969 | [378] |
IBM System/360 | ? | 1964 | IBM | Hybrid circuits | |
PDP-8 "Straight-8" | 1,409[365] | 1965 | Digital Equipment Corporation | discrete transistors, 10,000 diodes | |
PDP-8/S | 1,001[379][380][381] | 1966 | Digital Equipment Corporation | discrete transistors, diodes | |
PDP-8/I | 1,409 | 1968[382] | Digital Equipment Corporation | 74 series TTL circuits[383] | |
Apollo Guidance Computer Block I | 12,300 | 1966 | Raytheon / MIT Instrumentation Laboratory | 4,100 ICs, each containing a 3-transistor, 3-input NOR gate. (Block II had 2,800 dual 3-input NOR gates ICs.) |
Logic functions
Transistor count for generic logic functions is based on static CMOS implementation.[384]
Function | Transistor count | Ref |
---|---|---|
NOT | 2 | |
Buffer | 4 | |
NAND 2-input | 4 | |
NOR 2-input | 4 | |
AND 2-input | 6 | |
OR 2-input | 6 | |
NAND 3-input | 6 | |
NOR 3-input | 6 | |
XOR 2-input | 6 | |
XNOR 2-input | 8 | |
MUX 2-input with TG | 6 | |
MUX 4-input with TG | 18 | |
NOT MUX 2-input | 8 | |
MUX 4-input | 24 | |
1-bit full adder | 24 | |
1-bit adder–subtractor | 48 | |
AND-OR-INVERT | 6 | [385] |
Latch, D gated | 8 | |
Flip-flop, edge triggered dynamic D with reset | 12 | |
8-bit multiplier | 3,000 | |
16-bit multiplier | 9,000 | |
32-bit multiplier | 21,000 | |
small-scale integration | 2–100 | [386] |
medium-scale integration | 100–500 | [386] |
large-scale integration | 500–20,000 | [386] |
very-large-scale integration | 20,000–1,000,000 | [386] |
ultra-large scale integration | >1,000,000 |
Parallel systems
Historically, each processing element in earlier parallel systems—like all CPUs of that time—was a serial computer built out of multiple chips. As transistor counts per chip increases, each processing element could be built out of fewer chips, and then later each multi-core processor chip could contain more processing elements.[387]
Goodyear MPP: (1983?) 8 pixel processors per chip, 3,000 to 8,000 transistors per chip.[387]
Brunel University Scape (single-chip array-processing element): (1983) 256 pixel processors per chip, 120,000 to 140,000 transistors per chip.[387]
Cell Broadband Engine: (2006) with 9 cores per chip, had 234 million transistors per chip.[388]
Other devices
Device type | Device name | Transistor count | Date of introduction | Designer(s) | Manufacturer(s) | MOS process | Area | Transistor density, tr./mm2 | Ref |
---|---|---|---|---|---|---|---|---|---|
Deep learning engine / IPU[lower-alpha 8] | Colossus GC2 | 23,600,000,000 | 2018 | Graphcore | TSMC | 16 nm | ~800 mm2 | 29,500,000 | |
Deep learning engine / IPU | Wafer Scale Engine | 1,200,000,000,000 | 2019 | Cerebras | TSMC | 16 nm | 46,225 mm2 | 25,960,000 | [2][3][4][5] |
Deep learning engine / IPU | Wafer Scale Engine 2 | 2,600,000,000,000 | 2020 | Cerebras | TSMC | 7 nm | 46,225 mm2 | 56,250,000 | [6][389][390] |
Network switch | NVLink4 NVSwitch | 25,100,000,000 | 2022 | Nvidia | TSMC | N4 (4 nm) | 294 mm2 | 85,370,000 | [391] |
Transistor density
The transistor density is the number of transistors that are fabricated per unit area, typically measured in terms of the number of transistors per square millimeter (mm2). The transistor density usually correlates with the gate length of a semiconductor node (also known as a semiconductor manufacturing process), typically measured in nanometers (nm). (As of 2019), the semiconductor node with the highest transistor density is TSMC's 5 nanometer node, with 171.3 million transistors per square millimeter (note this corresponds to a transistor-transistor spacing of 76.4 nm, far greater than the relative meaningless "5nm")[392]
MOSFET nodes
Node name | Transistor density (transistors/mm2) | Production year | Process | MOSFET | Manufacturer(s) | Ref |
---|---|---|---|---|---|---|
? | ? | 1960 | 20,000 nm | PMOS | Bell Labs | [393][394] |
? | ? | 1960 | 20,000 nm | NMOS | ||
? | ? | 1963 | ? | CMOS | Fairchild | [395] |
? | ? | 1964 | ? | PMOS | General Microelectronics | [396] |
? | ? | 1968 | 20,000 nm | CMOS | RCA | [397] |
? | ? | 1969 | 12,000 nm | PMOS | Intel | [315][307] |
? | ? | 1970 | 10,000 nm | CMOS | RCA | [397] |
? | 300 | 1970 | 8,000 nm | PMOS | Intel | [309][297] |
? | ? | 1971 | 10,000 nm | PMOS | Intel | [398] |
? | 480 | 1971 | ? | PMOS | General Instrument | [311] |
? | ? | 1973 | ? | NMOS | Texas Instruments | [311] |
? | 220 | 1973 | ? | NMOS | Mostek | [311] |
? | ? | 1973 | 7,500 nm | NMOS | NEC | [20][19] |
? | ? | 1973 | 6,000 nm | PMOS | Toshiba | [21][399] |
? | ? | 1976 | 5,000 nm | NMOS | Hitachi, Intel | [311] |
? | ? | 1976 | 5,000 nm | CMOS | RCA | |
? | ? | 1976 | 4,000 nm | NMOS | Zilog | |
? | ? | 1976 | 3,000 nm | NMOS | Intel | [400] |
? | 1,850 | 1977 | ? | NMOS | NTT | [311] |
? | ? | 1978 | 3,000 nm | CMOS | Hitachi | [401] |
? | ? | 1978 | 2,500 nm | NMOS | Texas Instruments | [311] |
? | ? | 1978 | 2,000 nm | NMOS | NEC, NTT | |
? | 2,600 | 1979 | ? | VMOS | Siemens | |
? | 7,280 | 1979 | 1,000 nm | NMOS | NTT | |
? | 7,620 | 1980 | 1,000 nm | NMOS | NTT | |
? | ? | 1983 | 2,000 nm | CMOS | Toshiba | [315] |
? | ? | 1983 | 1,500 nm | CMOS | Intel | [311] |
? | ? | 1983 | 1,200 nm | CMOS | Intel | |
? | ? | 1984 | 800 nm | CMOS | NTT | |
? | ? | 1987 | 700 nm | CMOS | Fujitsu | |
? | ? | 1989 | 600 nm | CMOS | Mitsubishi, NEC, Toshiba | [315] |
? | ? | 1989 | 500 nm | CMOS | Hitachi, Mitsubishi, NEC, Toshiba | |
? | ? | 1991 | 400 nm | CMOS | Matsushita, Mitsubishi, Fujitsu, Toshiba | |
? | ? | 1993 | 350 nm | CMOS | Sony | |
? | ? | 1993 | 250 nm | CMOS | Hitachi, NEC | |
3LM | 32,000 | 1994 | 350 nm | CMOS | NEC | [205] |
? | ? | 1995 | 160 nm | CMOS | Hitachi | [315] |
? | ? | 1996 | 150 nm | CMOS | Mitsubishi | |
TSMC 180 nm | ? | 1998 | 180 nm | CMOS | TSMC | [402] |
CS80 | ? | 1999 | 180 nm | CMOS | Fujitsu | [403] |
? | ? | 1999 | 180 nm | CMOS | Intel, Sony, Toshiba | [305][217] |
CS85 | ? | 1999 | 170 nm | CMOS | Fujitsu | [404] |
Samsung 140 nm | ? | 1999 | 140 nm | CMOS | Samsung | [315] |
? | ? | 2001 | 130 nm | CMOS | Fujitsu, Intel | [403][305] |
Samsung 100 nm | ? | 2001 | 100 nm | CMOS | Samsung | [315] |
? | ? | 2002 | 90 nm | CMOS | Sony, Toshiba, Samsung | [217][333] |
CS100 | ? | 2003 | 90 nm | CMOS | Fujitsu | [403] |
Intel 90 nm | 1,450,000 | 2004 | 90 nm | CMOS | Intel | [405][305] |
Samsung 80 nm | ? | 2004 | 80 nm | CMOS | Samsung | [406] |
? | ? | 2004 | 65 nm | CMOS | Fujitsu, Toshiba | [407] |
Samsung 60 nm | ? | 2004 | 60 nm | CMOS | Samsung | [333] |
TSMC 45 nm | ? | 2004 | 45 nm | CMOS | TSMC | |
Elpida 90 nm | ? | 2005 | 90 nm | CMOS | Elpida Memory | [408] |
CS200 | ? | 2005 | 65 nm | CMOS | Fujitsu | [409][403] |
Samsung 50 nm | ? | 2005 | 50 nm | CMOS | Samsung | [335] |
Intel 65 nm | 2,080,000 | 2006 | 65 nm | CMOS | Intel | [405] |
Samsung 40 nm | ? | 2006 | 40 nm | CMOS | Samsung | [335] |
Toshiba 56 nm | ? | 2007 | 56 nm | CMOS | Toshiba | [336] |
Matsushita 45 nm | ? | 2007 | 45 nm | CMOS | Matsushita | [81] |
Intel 45 nm | 3,300,000 | 2008 | 45 nm | CMOS | Intel | [410] |
Toshiba 43 nm | ? | 2008 | 43 nm | CMOS | Toshiba | [337] |
TSMC 40 nm | ? | 2008 | 40 nm | CMOS | TSMC | [411] |
Toshiba 32 nm | ? | 2009 | 32 nm | CMOS | Toshiba | [412] |
Intel 32 nm | 7,500,000 | 2010 | 32 nm | CMOS | Intel | [410] |
? | ? | 2010 | 20 nm | CMOS | Hynix, Samsung | [413][335] |
Intel 22 nm | 15,300,000 | 2012 | 22 nm | CMOS | Intel | [410] |
IMFT 20 nm | ? | 2012 | 20 nm | CMOS | IMFT | [414] |
Toshiba 19 nm | ? | 2012 | 19 nm | CMOS | Toshiba | |
Hynix 16 nm | ? | 2013 | 16 nm | FinFET | SK Hynix | [413] |
TSMC 16 nm | 28,880,000 | 2013 | 16 nm | FinFET | TSMC | [415][416] |
Samsung 10 nm | 51,820,000 | 2013 | 10 nm | FinFET | Samsung | [417][418] |
Intel 14 nm | 37,500,000 | 2014 | 14 nm | FinFET | Intel | [410] |
14LP | 32,940,000 | 2015 | 14 nm | FinFET | Samsung | [417] |
TSMC 10 nm | 52,510,000 | 2016 | 10 nm | FinFET | TSMC | [415][419] |
12LP | 36,710,000 | 2017 | 12 nm | FinFET | GlobalFoundries, Samsung | [239] |
N7FF | 96,500,000
101,850,000[420] |
2017 | 7 nm | FinFET | TSMC | [421][422][423] |
8LPP | 61,180,000 | 2018 | 8 nm | FinFET | Samsung | [417] |
7LPE | 95,300,000 | 2018 | 7 nm | FinFET | Samsung | [422] |
Intel 10 nm | 100,760,000
106,100,000[420] |
2018 | 10 nm | FinFET | Intel | [424] |
5LPE | 126,530,000 | 2018 | 5 nm | FinFET | Samsung | [426][427] |
N7FF+ | 113,900,000 | 2019 | 7 nm | FinFET | TSMC | [421][422] |
CLN5FF | 171,300,000
185,460,000[420] |
2019 | 5 nm | FinFET | TSMC | [392] |
Intel 7 | 100,760,000
106,100,000[420] |
2021 | 7 nm | FinFET | Intel | |
4LPE | 145,700,000[425] | 2021 | 4 nm | FinFET | Samsung | [428][429][430] |
N4 | 196,600,000[420][431] | 2021 | 4 nm | FinFET | TSMC | [432] |
N4P | 196,600,000[420][431] | 2022 | 4 nm | FinFET | TSMC | [433] |
3GAE | 202,850,000[420] | 2022 | 3 nm | MBCFET | Samsung | [434][428][435] |
N3 | 314,730,000[420] | 2022 | 3 nm | FinFET | TSMC | [436][437] |
N4X | ? | 2023 | 4 nm | FinFET | TSMC | [438][439][440] |
N3E | ? | 2023 | 3 nm | FinFET | TSMC | [437][441] |
3GAP | ? | 2023 | 3 nm | MBCFET | Samsung | [428] |
Intel 4 | 160,000,000[442] | 2023 | 4 nm | FinFET | Intel | [443][444][445] |
Intel 3 | ? | 2023 | 3 nm | FinFET | Intel | [444][445] |
Intel 20A | ? | 2024 | 2 nm | RibbonFET | Intel | [444][445] |
Intel 18A | ? | 2025 | sub-2 nm | RibbonFET | Intel | [444] |
2GAP | ? | 2025 | 2 nm | MBCFET | Samsung | [428] |
N2 | ? | 2025 | 2 nm | GAAFET | TSMC | [437][441] |
Samsung 1.4 nm | ? | 2027 | 1.4 nm | ? | Samsung | [446] |
See also
- Gate count, an alternate metric
- Dennard scaling
- Electronics industry
- Integrated circuit
- List of best-selling electronic devices
- List of semiconductor scale examples
- MOSFET
- Semiconductor
- Semiconductor device
- Semiconductor device fabrication
- Semiconductor industry
- Transistor
- Cerebras Systems
Notes
- ↑ Declassified 1998
- ↑ The TMS1000 is a microcontroller, the transistor count includes memory and input/output controllers, not just the CPU.
- ↑ 3,510 without depletion mode pull-up transistors
- ↑ 6,813 without depletion mode pull-up transistors
- ↑ 3,900,000,000 core chiplet die, 2,090,000,000 I/O die
- ↑ 6.0 6.1 Estimate
- ↑ Versal Premium are confirmed to be shipping in 1H 2021 but nothing was mentioned about the VP1802 in particular. Usually Xilinx makes separate news for the release of its biggest devices so the VP1802 is likely to be released later.
- ↑ "Intelligence Processing Unit"
References
- ↑ Khosla, Robin (2017). Alternate high-k dielectrics for next-generation CMOS logic and memory technology (PhD). IIT Mandi.
- ↑ 2.0 2.1 Hruska, Joel (August 2019). "Cerebras Systems Unveils 1.2 Trillion Transistor Wafer-Scale Processor for AI". https://www.extremetech.com/extreme/296906-cerebras-systems-unveils-1-2-trillion-transistor-wafer-scale-processor-for-ai.
- ↑ 3.0 3.1 Feldman, Michael (August 2019). "Machine Learning chip breaks new ground with waferscale integration". https://www.nextplatform.com/2019/08/21/machine-learning-chip-breaks-new-ground-with-waferscale-integration/.
- ↑ 4.0 4.1 Cutress, Ian (August 2019). "Hot Chips 31 Live Blogs: Cerebras' 1.2 Trillion Transistor Deep Learning Processor". https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning.
- ↑ 5.0 5.1 "A Look at Cerebras Wafer-Scale Engine: Half Square Foot Silicon Chip" (in en-US). 2019-11-16. https://fuse.wikichip.org/news/3010/a-look-at-cerebras-wafer-scale-engine-half-square-foot-silicon-chip/.
- ↑ 6.0 6.1 Everett, Joseph (August 26, 2020). "World's largest CPU has 850,000 7 nm cores that are optimized for AI and 2.6 trillion transistors". https://www.techreportarticles.com/news/artificial-intelligence/worlds-largest-cpu-chip-has-850000-7nm-cores-optimized-for-ai-most-powerful-processor/.
- ↑ 7.0 7.1 "Apple introduces M2 Ultra" (Press release). Apple. 2023-06-05.
- ↑ "John Gustafson's answer to How many individual transistors are in the world's most powerful supercomputer?". https://www.quora.com/How-many-individual-transistors-are-in-the-worlds-most-powerful-supercomputer/answer/John-Gustafson-1.
- ↑ Pires, Francisco (2022-10-05). "Water-Based Chips Could be Breakthrough for Neural Networking, AI: Wetware has gained an entirely new meaning" (in en). https://www.tomshardware.com/news/water-based-chips-could-be-breakthrough-for-neural-networking-ai.
- ↑ Laws, David (2018-04-02). "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". https://computerhistory.org/blog/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history/.
- ↑ Handy, Jim (2014-05-26). "How Many Transistors Have Ever Shipped?". https://www.forbes.com/sites/jimhandy/2014/05/26/how-many-transistors-have-ever-shipped/.
- ↑ "1971: Microprocessor Integrates CPU Function onto a Single Chip". Computer History Museum. https://www.computerhistory.org/siliconengine/microprocessor-integrates-cpu-function-onto-a-single-chip/.
- ↑ 13.0 13.1 Holt, Ray. "World's First Microprocessor". https://www.firstmicroprocessor.com/. "1st fully integrated chip set microprocessor"
- ↑ 14.0 14.1 "Alpha 21364 - Microarchitectures - Compaq - WikiChip". https://en.wikichip.org/wiki/compaq/microarchitectures/alpha_21364.
- ↑ Holt, Ray M. (1998). The F14A Central Air Data Computer and the LSI Technology State-of-the-Art in 1968. pp. 8.
- ↑ Holt, Ray M. (2013). "F14 TomCat MOS-LSI Chip Set". https://firstmicroprocessor.com/wp-content/uploads/2020/02/2013powerpoint.ppt.
- ↑ Ken Shirriff. "The Texas Instruments TMX 1795: the (almost) first, forgotten microprocessor". 2015.
- ↑ Ryoichi Mori; Hiroaki Tajima; Morihiko Tajima; Yoshikuni Okada (October 1977). "Microprocessors in Japan". Euromicro Newsletter 3 (4): 50–7. doi:10.1016/0303-1268(77)90111-0.
- ↑ 19.0 19.1 "NEC 751 (uCOM-4)". The Antique Chip Collector's Page. http://www.antiquetech.com/chips/NEC751.htm.
- ↑ 20.0 20.1 "1970s: Development and evolution of microprocessors". http://www.shmj.or.jp/english/pdf/ic/exhibi748E.pdf.
- ↑ 21.0 21.1 "1973: 12-bit engine-control microprocessor (Toshiba)". http://www.shmj.or.jp/english/pdf/ic/exhibi739E.pdf.
- ↑ "Low Bandwidth Timeline – Semiconductor". http://www.ti.com/corp/docs/company/history/lowbandwidthtimelinesemiconductor.shtml?keyMatch=TMS-1000&tisearch=Search-EN-Everything.
- ↑ "The MOS 6502 and the Best Layout Guy in the World". January 3, 2011. https://research.swtch.com/6502.
- ↑ Shirriff, Ken (January 2023). "Counting the transistors in the 8086 processor: it's harder than you might think". https://www.righto.com/2023/01/counting-transistors-in-8086-processor.html.
- ↑ "Digital History: ZILOG Z8000 (APRIL 1979)". http://www.old-computers.com/history/detail.asp?n=52.
- ↑ "Chip Hall of Fame: Motorola MC68000 Microprocessor". Institute of Electrical and Electronics Engineers. 30 June 2017. https://spectrum.ieee.org/tech-history/silicon-revolution/chip-hall-of-fame-motorola-mc68000-microprocessor.
- ↑ Microprocessors: 1971 to 1976 Christiansen
- ↑ "Microprocessors 1976 to 1981". weber.edu. http://icarus.cs.weber.edu/home/dferro/ada/Christiansen_Report_Finished/Finishedmicroprocessors.doc.
- ↑ "W65C816S 16-bit Core". http://www.westerndesigncenter.com/wdc/w65c816s-core.cfm.
- ↑ 30.0 30.1 30.2 30.3 30.4 Demone, Paul (2000-11-09). "ARM's Race to World Domination". real world technologies. http://www.realworldtech.com/arms-race/.
- ↑ Hand, Tom. "The Harris RTX 2000 Microcontroller". mpeforth.com. http://soton.mpeforth.com/flag/jfar/vol6/no1/article1.pdf.
- ↑ "Forth chips list". UltraTechnology. 2001-03-15. http://www.ultratechnology.com/chips.htm.
- ↑ Koopman, Philip J. (1989). "4.4 Architecture of the Novix NC4016". Stack Computers: the new wave. Ellis Horwood Series in Computers and Their Applications. Carnegie Mellon University. ISBN 978-0745804187. https://www.ece.cmu.edu/~koopman/stack_computers/sec4_4.html. Retrieved 2014-08-09.
- ↑ "Fujitsu SPARC". http://www.cpu-collection.de/?tn=0&l0=cl&l1=SPARC&l2=Fujitsu.
- ↑ 35.0 35.1 "Implementation of the V60/V70 and its FRM function". IEEE Micro 8 (2): 22–36. 1988. doi:10.1109/40.527.
- ↑ "VL2333 - VTI - WikiChip". https://en.wikichip.org/wiki/vti/vl86cx/vl2333.
- ↑ "Realization of Gmicro/200". IEEE Micro 8 (2): 12–21. 1988. doi:10.1109/40.526.
- ↑ Bosshart, P.; Hewes, C.; Mi-Chang Chang; Kwok-Kit Chau; Hoac, C.; Houston, T.; Kalyan, V.; Lusky, S. et al. (October 1987). "A 553K-Transistor LISP Processor Chip". IEEE Journal of Solid-State Circuits 22 (5): 202–3. doi:10.1109/ISSCC.1987.1157084.
- ↑ Fahlén, Lennart E.; Stockholm International Peace Research Institute (1987). "3. Hardware requirements for artificial intelligence § Lisp Machines: TI Explorer". Arms and Artificial Intelligence: Weapon and Arms Control Applications of Advanced Computing. SIPRI Monograph Series. Oxford University Press. p. 57. ISBN 978-0-19-829122-0. https://books.google.com/books?id=88Mcg5MMPdYC&pg=PA57.
- ↑ Jouppi, Norman P.; Tang, Jeffrey Y. F. (July 1989). "A 20-MIPS Sustained 32-bit CMOS Microprocessor with High Ratio of Sustained to Peak Performance". IEEE Journal of Solid-State Circuits 24 (5): i. doi:10.1109/JSSC.1989.572612. WRL Research Report 89/11. Bibcode: 1989IJSSC..24.1348J.
- ↑ "The CPU shack museum". CPUshack.com. 2005-05-15. http://www.cpushack.com/chippics/Intel/80960/IntelA80960CA-25-2.html.
- ↑ 42.0 42.1 42.2 "Intel i960 Embedded Microprocessor". Florida State University. 3 March 2003. http://micro.magnet.fsu.edu/optics/olympusmicd/galleries/chips/intel960b.html.
- ↑ Venkatasawmy, Rama (2013). The Digitization of Cinematic Visual Effects: Hollywood's Coming of Age. Rowman & Littlefield. p. 198. ISBN 9780739176214. https://books.google.com/books?id=tg2ix9VD_-sC&pg=PA198.
- ↑ Bakoglu, Grohoski, and Montoye. "The IBM RISC System/6000 processor: Hardware overview." IBM J. Research and Development. Vol. 34 No. 1, January 1990, pp. 12-22.
- ↑ "SH Microprocessor Leading the Nomadic Era". http://www.shmj.or.jp/makimoto/en/pdf/makimoto_E_02_10.pdf.
- ↑ "SH2: A Low Power RISC Micro for Consumer Applications". Hitachi. http://www.hotchips.org/wp-content/uploads/hc_archives/hc06/2_Mon/HC6.S4/HC6.4.2.pdf.
- ↑ "HARP-1: A 120 MHz Superscalar PA-RISC Processor". Hitachi. https://www.hotchips.org/wp-content/uploads/hc_archives/hc05/3_Tue/HC05.S8/HC05.8.1-Matsubara-Hitachi-HARP-1.pdf.
- ↑ White and Dhawan. "POWER2: next generation of the RISC System/6000 family" IBM J. Research and Development. Vol. 38 No. 5, September 1994, pp. 493-502.
- ↑ "ARM7 Statistics". Poppyfields.net. 1994-05-27. http://www.poppyfields.net/acorn/docs/armdocs/arm7stat.shtml.
- ↑ "Forth Multiprocessor Chip MuP21". http://www.ultratechnology.com/p21.html. "MuP21 has a 21-bit CPU core, a memory coprocessor, and a video coprocessor"
- ↑ 51.0 51.1 "F21 CPU". http://www.ultratechnology.com/f21cpu.html. "F21 offers video I/O, analog I/O, serial network I/O, and a parallel I/O port on chip. F21 has a transistor count of about 15,000 vs about 7,000 for MuP21."
- ↑ "Ars Technica: PowerPC on Apple: An Architectural History, Part I - Page 2 - (8/2004)". https://archive.arstechnica.com/cpu/004/ppc-1/m-ppc-1-2.html.
- ↑ Gary et al. (1994). "The PowerPC 603 microprocessor: a low-power design for portable applications." Proceedings of COMPCON 94. DOI: 10.1109/CMPCON.1994.282894
- ↑ Slaton et al. (1995). "The PowerPC 603e microprocessor: an enhanced, low-power, superscalar microprocessor." Proceedings of ICCD '95 International Conference on Computer Design. DOI: 10.1109/ICCD.1995.528810
- ↑ Bowhill, William J. et al. (1995). "Circuit Implementation of a 300-MHz 64-bit Second-generation CMOS Alpha CPU". Digital Technical Journal, Volume 7, Number 1, pp. 100–118.
- ↑ "Intel Pentium Pro 180". http://hw-museum.cz/cpu/7/intel-pentium-pro-180.
- ↑ "PC Guide Intel Pentium Pro ("P6")". PCGuide.com. 2001-04-17. http://www.pcguide.com/ref/cpu/fam/g6PPro-c.html.
- ↑ Gaddis, N.; Lotz, J. (November 1996). "A 64-b quad-issue CMOS RISC microprocessor". IEEE Journal of Solid-State Circuits 31 (11): pp. 1697–1702.
- ↑ Bouchard, Gregg. "Design objectives of the 0.35 μm Alpha 21164 Microprocessor". IEEE Hot Chips Symposium, August 1996, IEEE Computer Society.
- ↑ Ulf Samuelsson. "Transistor count of common uCs?". https://www.embeddedrelated.com/showthread/comp.arch.embedded/14362-1.php. "IIRC, The AVR core is 12,000 gates, and the megaAVR core is 20,000 gates. Each gate is 4 transistors. The chip is considerably larger since the memory uses quite a lot."
- ↑ Gronowski, Paul E. et al. (May 1998). "High-performance microprocessor design". IEEE Journal of Solid-State Circuits 33 (5): pp. 676–686.
- ↑ Nakagawa, Norio; Arakawa, Fumio (April 1999). "Entertainment Systems and High-Performance Processor SH-4". Hitachi Review 48 (2): 58–63. https://www.hitachi.com/rev/1999/revapr99/r2_103.pdf. Retrieved 2023-03-18.
- ↑ Nishii, O.; Arakawa, F.; Ishibashi, K.; Nakano, S.; Shimura, T.; Suzuki, K.; Tachibana, M.; Totsuka, Y. et al. (1998). "A 200 MHZ 1.2 W 1.4 GFLOPS microprocessor with graphic operation unit". 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No. 98CH36156). IEEE. pp. 18.1-1 - 18.1-11. doi:10.1109/ISSCC.1998.672469. ISBN 0-7803-4344-1. https://ieeexplore.ieee.org/document/672469. Retrieved 17 March 2023.
- ↑ 64.0 64.1 Diefendorff, Keith (April 19, 1999). "Sony's Emotionally Charged Chip: Killer Floating-Point "Emotion Engine" To Power PlayStation 2000". Microprocessor Report 13 (5). http://pdfs.semanticscholar.org/9248/eea6c98e5a7fc45606d9d562a0e74707ce43.pdf. Retrieved 19 June 2019.
- ↑ 65.0 65.1 65.2 "NVIDIA GeForce 7800 GTX GPU Review". 22 June 2005. https://pcper.com/2005/06/nvidia-geforce-7800-gtx-gpu-review/.
- ↑ Ando, H.; Yoshida, Y.; Inoue, A.; Sugiyama, I.; Asakawa, T.; Morita, K.; Muta, T.; Otokurumada, T. et al. (2003). "Proceedings of the 40th Annual Design Automation Conference". Design Automation Conference. pp. 702–705. doi:10.1145/775832.776010. ISBN 1-58113-688-9.
- ↑ Krewell, Kevin (21 October 2002). "Fujitsu's SPARC64 V Is Real Deal". Microprocessor Report.
- ↑ "Intel Pentium M Processor 1.60 GHZ, 1M Cache, 400 MHZ FSB Product Specifications". https://ark.intel.com/content/www/us/en/ark/products/27577/intel-pentium-m-processor-1-60-ghz-1m-cache-400-mhz-fsb.html.
- ↑ "EE+GS". https://playstationdev.wiki/ps2devwiki/EE%2BGS.
- ↑ "Sony MARKETING (JAPAN) ANNOUNCES LAUNCH OF "PSX" DESR-5000 and DESR-7000 TOWARDS THE END OF 2003" (Press release). Sony. 2003-11-27.
- ↑ "EMOTION ENGINE AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION BECOME ONE CHIP". Sony. April 21, 2003. https://www.sie.com/content/dam/corporate/en/corporate/release/pdf/030421be.pdf.
- ↑ "Sony PSX's 90nm CPU is 'not 90nm'". 2004-01-30. https://www.theregister.com/2004/01/30/sony_psxs_90nm_cpu/.
- ↑ "Semi Insights stands by 'not 90-nm' description of PSX chip". 2004-02-05. https://www.eetimes.com/semi-insights-stands-by-not-90-nm-description-of-psx-chip/.
- ↑ "Intel Pentium M Processor 760 (2M Cache, 2.00A GHZ, 533 MHZ FSB) Product Specifications". https://ark.intel.com/content/www/us/en/ark/products/27595/intel-pentium-m-processor-760-2m-cache-2-00a-ghz-533-mhz-fsb.html.
- ↑ Fujitsu Limited (August 2004). SPARC64 V Processor For UNIX Server.
- ↑ "A Glimpse Inside The Cell Processor". July 13, 2006. https://www.gamasutra.com/view/feature/131168/a_glimpse_inside_the_cell_processor.php.
- ↑ "Intel Pentium D Processor 920". Intel. https://ark.intel.com/content/www/us/en/ark/products/42114/intel-pentium-d-processor-920-4m-cache-2-8-ghz-800-mhz-fsb.html.
- ↑ "PRESS KIT — Dual-core Intel Itanium Processor". Intel. http://www.intel.com/pressroom/kits/itanium2/.
- ↑ 79.0 79.1 Toepelt, Bert (2009-01-08). "AMD Phenom II X4: 45nm Benchmarked — The Phenom II And AMD's Dragon Platform". TomsHardware.com. http://www.tomshardware.com/reviews/phenom-ii-940,2114.html.
- ↑ "ARM (Advanced RISC Machines) Processors". EngineersGarage.com. http://www.engineersgarage.com/articles/arm-advanced-risc-machines-processors.
- ↑ 81.0 81.1 "Panasonic starts to sell a New-generation UniPhier System LSI". Panasonic. October 10, 2007. http://panasonic.co.jp/corp/news/official.data/data.dir/en071010-3/en071010-3.html.
- ↑ "SPARC64 VI Extensions" page 56, Fujitsu Limited, Release 1.3, 27 March 2007
- ↑ Morgan, Timothy Prickett (17 July 2008). "Fujitsu and Sun Flex Their Quads with New Sparc Server Lineup". The Unix Guardian, Vol. 8, No. 27.
- ↑ Takumi Maruyama (2009). "SPARC64 VIIIfx: Fujitsu's New Generation Octo Core Processor for PETA Scale computing". Proceedings of Hot Chips 21. IEEE Computer Society. http://www.hotchips.org/archives/hc21/3_tues/HC21.25.500.ComputingAccelerators-Epub/HC21.25.51A.Maruyama-Fujitsu-Octo-Core-VIIIfx.pdf. Retrieved 30 June 2019.
- ↑ "Intel Atom N450 specifications". https://ark.intel.com/content/www/us/en/ark/products/42503/intel-atom-processor-n450-512k-cache-1-66-ghz.html.
- ↑ "Intel Atom D510 specifications". https://ark.intel.com/content/www/us/en/ark/products/43098/intel-atom-processor-d510-1m-cache-1-66-ghz.html.
- ↑ Stokes, Jon (2010-02-10). "Sun's 1 billion-transistor, 16-core Niagara 3 processor". ArsTechnica.com. https://arstechnica.com/business/news/2010/02/two-billion-transistor-beasts-power7-and-niagara-3.ars.
- ↑ "IBM to Ship World's Fastest Microprocessor". IBM. 2010-09-01. http://www-03.ibm.com/press/us/en/pressrelease/32414.wss#release.
- ↑ "Intel to deliver first computer chip with two billion transistors". February 5, 2008. http://afp.google.com/article/ALeqM5ipelkeZwHqz3cqmha_jD7gNhB98A.
- ↑ "Intel Previews Intel Xeon 'Nehalem-EX' Processor." May 26, 2009. Retrieved on May 28, 2009.
- ↑ Morgan, Timothy Prickett (November 21, 2011), "Fujitsu parades 16-core Sparc64 super stunner", The Register, https://www.theregister.co.uk/2011/11/21/fujitsu_sparc64_ixfx_fx10_details, retrieved December 8, 2011
- ↑ Angelini, Chris (2011-11-14). "Intel Core i7-3960X Review: Sandy Bridge-E And X79 Express". TomsHardware.com. http://www.tomshardware.com/reviews/core-i7-3960x-x79-sandy-bridge-e,3071.html.
- ↑ "IDF2012 Mark Bohr, Intel Senior Fellow". https://www.intel.com/content/dam/www/public/us/en/documents/presentation/silicon-technology-leadership-presentation.pdf.
- ↑ "Images of SPARC64". fujitsu.com. https://www.fujitsu.com/global/Images/HC25.27.910-SPARC64.pdf.
- ↑ "Intel's Atom Architecture: The Journey Begins". AnandTech. http://www.anandtech.com/showdoc.aspx?i=3276&p=9.
- ↑ "Intel Xeon Phi SE10X". TechPowerUp. http://www.techpowerup.com/gpudb/1891/xeon-phi-se10x.html.
- ↑ Shimpi, Lal. "The Haswell Review: Intel Core i7-4770K & i5-4670K Tested". http://www.anandtech.com/show/7003/the-haswell-review-intel-core-i74770k-i54560k-tested/5.
- ↑ "Dimmick, Frank (August 29, 2014). "Intel Core i7 5960X Extreme Edition Review". http://www.overclockersclub.com/reviews/iintel_core_i7_5960x_extreme_edition/.
- ↑ "Apple A8X". http://www.notebookcheck.net/Apple-A8X-iPad-SoC.128403.0.html.
- ↑ "Intel Readying 15-core Xeon E7 v2". AnandTech. http://www.anandtech.com/show/7753/intel-readying-15core-xeon-e7-v2.
- ↑ "Intel Xeon E5-2600 v3 Processor Overview: Haswell-EP Up to 18 Cores". September 8, 2014. http://www.pcper.com/reviews/Processors/Intel-Xeon-E5-2600-v3-Processor-Overview-Haswell-EP-18-Cores/5.
- ↑ "Intel's Broadwell-U arrives aboard 15W, 28W mobile processors". TechReport. January 5, 2015. http://techreport.com/news/27557/intel-broadwell-u-arrives-aboard-15w-28w-mobile-processors.
- ↑ "Oracle Cranks up the Cores to 32 with Sparc M7 Chip". August 13, 2014. http://www.enterprisetech.com/2014/08/13/oracle-cranks-cores-32-sparc-m7-chip/.
- ↑ "Broadwell-E: Intel Core i7-6950X, 6900K, 6850K & 6800K Review". 2016-05-30. http://www.tomshardware.com/reviews/intel-core-i7-broadwell-e-6950x-6900k-6850k-6800k,4587.html.
- ↑ "The Broadwell-E Review". PC Gamer. 2016-07-08. http://www.pcgamer.com/the-broadwell-e-review/. Retrieved 2017-04-12.
- ↑ "HUAWEI TO UNVEIL KIRIN 970 SOC WITH AI UNIT, 5.5 BILLION TRANSISTORS AND 1.2 GBPS LTE SPEED AT IFA 2017". 2017-09-01. https://www.firstpost.com/tech/news-analysis/huawei-to-unveil-kirin-970-soc-with-ai-unit-5-5-billion-transistors-and-1-2-gbps-lte-speed-at-ifa-2017-3996027.html.
- ↑ "Broadwell-EP Architecture - Intel Xeon E5-2600 v4 Broadwell-EP Review". 2016-03-31. http://www.tomshardware.com/reviews/intel-xeon-e5-2600-v4-broadwell-ep,4514-2.html.
- ↑ "About the ZipCPU". http://zipcpu.com/about/zipcpu.html. "As of ORCONF, 2016, the ZipCPU used between 1286 and 4926 6-LUTs, depending upon how it is configured."
- ↑ "Qualcomm Snapdragon 835 (8998)". https://www.notebookcheck.net/Qualcomm-Snapdragon-835-SoC-Benchmarks-and-Specs.207842.0.html.
- ↑ Takahashi, Dean (January 3, 2017). "Qualcomm's Snapdragon 835 will debut with 3 billion transistors and a 10nm manufacturing process". https://venturebeat.com/2017/01/03/qualcomms-snapdragon-835-will-debut-with-3-billion-transistors-and-a-10nm-manufacturing-process/.
- ↑ Singh, Teja (2017). "3.2 Zen: A Next-Generation High-Performance x86 Core". pp. 52–54.
- ↑ Cutress, Ian (22 February 2017). "AMD Launches Zen". Anandtech.com. http://www.anandtech.com/show/11143/amd-launch-ryzen-52-more-ipc-eight-cores-for-under-330-preorder-today-on-sale-march-2nd.
- ↑ "Ryzen 5 1600 - AMD". 2018-04-20. https://en.wikichip.org/wiki/amd/ryzen_5/1600.
- ↑ "Kirin 970 – HiSilicon". 2018-03-01. https://en.wikichip.org/wiki/hisilicon/kirin/970.
- ↑ 115.0 115.1 Leadbetter, Richard (2017-04-06). "Inside the next Xbox: Project Scorpio tech revealed". http://www.eurogamer.net/articles/digitalfoundry-2017-project-scorpio-tech-revealed.
- ↑ "Intel Xeon Platinum 8180". 2018-12-01. https://www.techpowerup.com/cpudb/2055/xeon-platinum-8180.
- ↑ Pellerano, Stefano (2022-03-02). "Circuit Design to Harness the Power of Scaling and Integration (ISSCC 2022)". https://youtube.com/watch?v=pFQj6L4eKc0.
- ↑ Lee, Y.. "SiFive Freedom SoCs : Industry's First Open Source RISC V Chips". HotChips 29 IOT/Embedded. https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.20-IOT-Embedded-Pub/HC29.21.210-Freedom-SoCs-Lee-SiFive-v2.pdf.
- ↑ "Documents at Fujitsu". fujitsu.com. http://www.fujitsu.com/jp/documents/products/computing/servers/unix/sparc/events/2017/coolchips20/CoolChips20-rev8.pdf.
- ↑ Schmerer, Kai (5 November 2018). "iPad Pro 2018: A12X-Prozessor bietet deutlich mehr Leistung" (in de). https://www.zdnet.de/88346243/ipad-pro-2018-a12x-prozessor-bietet-deutlich-mehr-leistung/.
- ↑ "Qualcomm Datacenter Technologies Announces Commercial Shipment of Qualcomm Centriq 2400 – The World's First 10nm Server Processor and Highest Performance Arm-based Server Processor Family Ever Designed". Qualcomm. https://www.qualcomm.com/news/releases/2017/11/08/qualcomm-datacenter-technologies-announces-commercial-shipment-qualcomm.
- ↑ "Qualcomm Snapdragon 1000 for laptops could pack 8.5 billion transistors". techradar. https://www.techradar.com/news/qualcomm-snapdragon-1000-for-laptops-could-pack-85-billion-transistors.
- ↑ "Spotted: Qualcomm Snapdragon 8cx Wafer on 7nm". AnandTech. https://www.anandtech.com/show/13687/qualcomm-snapdragon-8cx-wafer-on-7nm.
- ↑ "HiSilicon Kirin 710". 2018-09-19. https://www.notebookcheck.net/HiSilicon-Kirin-710-SoC-Benchmarks-and-Specs.333292.0.html.
- ↑ Yang, Daniel; Wegner, Stacy (September 21, 2018). "Apple iPhone Xs Max Teardown". TechInsights. http://www.techinsights.com/about-techinsights/overview/blog/apple-iphone-xs-teardown/.
- ↑ "Apple's A12 Bionic is the first 7-nanometer smartphone chip". Engadget. https://www.engadget.com/2018/09/12/apple-a12-bionic-7-nanometer-chip/.
- ↑ "Kirin 980 – HiSilicon". 2018-11-08. https://en.wikichip.org/wiki/hisilicon/kirin/980.
- ↑ "Qualcomm Snapdragon 8180: 7nm SoC SDM1000 With 8.5 Billion Transistors To Challenge Apple A12 Bionic Chipset". dailyhunt. https://m.dailyhunt.in/news/bangladesh/english/gear-epaper-gear/qualcomm+snapdragon+8180+7nm+soc+sdm1000+with+8+5+billion+transistors+to+challenge+apple+a12+bionic+chipset-newsid-97431923.
- ↑ Zafar, Ramish (October 30, 2018). "Apple's A12X Has 10 Billion Transistors, 90% Performance Boost & 7-Core GPU". https://wccftech.com/apple-a12x-10-billion-transistors-performance/.
- ↑ "Fujitsu began to produce Japan's billions of super-calculations with the strongest ARM processor A64FX". firstxw.com. 2019-04-16. http://images.firstxw.com/view/230119.html.
- ↑ "Fujitsu Successfully Triples the Power Output of Gallium-Nitride Transistors". Fujitsu. August 22, 2018. https://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html.
- ↑ "Hot Chips 30: Nvidia Xavier SoC". 2018-09-18. https://fuse.wikichip.org/news/1618/hot-chips-30-nvidia-xavier-soc.
- ↑ Frumusanu, Andrei. "The Samsung Galaxy S10+ Snapdragon & Exynos Review: Almost Perfect, Yet So Flawed". https://www.anandtech.com/show/14072/the-samsung-galaxy-s10plus-review.
- ↑ 134.0 134.1 134.2 134.3 134.4 134.5 "Zen 2 Microarchitecture". https://en.wikichip.org/wiki/amd/microarchitectures/zen_2.
- ↑ "AMD Ryzen 9 3900X and Ryzen 7 3700X Review: Zen 2 and 7nm Unleashed". Tom's Hardware. 7 July 2019. https://www.tomshardware.com/reviews/ryzen-9-3900x-7-3700x-review,6214.html.
- ↑ Frumusanu, Andrei. "The Huawei Mate 30 Pro Review: Top Hardware without Google?" (in en-US). https://www.anandtech.com/show/15099/the-huawei-mate-30-pro-review-top-hardware-without-google/2.
- ↑ Zafar, Ramish (2019-09-10). "Apple A13 For iPhone 11 Has 8.5 Billion Transistors, Quad-Core GPU". https://wccftech.com/apple-a13-iphone-11-transistors-gpu/.
- ↑ Introducing iPhone 11 Pro — Apple Youtube Video, https://www.youtube.com/watch?v=cVEemOmHw9Y&t=70, retrieved 2019-09-11Template:Dead YouTube link
- ↑ "Hot Chips 2020 Live Blog: IBM z15". 2020-08-17. https://www.anandtech.com/show/15987/hot-chips-2020-live-blog-ibm-z15-a-52-ghz-mainframe-cpu-1100am-pt.
- ↑ 140.0 140.1 Broekhuijsen, Niels (23 October 2019). "AMD's 64-Core EPYC and Ryzen CPUs Stripped: A Detailed Inside Look". https://www.tomshardware.com/news/amd-64-core-epyc-cpu-die-design-architecture-ryzen-3000.
- ↑ 141.0 141.1 Mujtaba, Hassan (22 October 2019). "AMD 2nd Gen EPYC Rome Processors Feature A Gargantuan 39.54 Billion Transistors, IO Die Pictured in Detail". https://wccftech.com/amd-2nd-gen-epyc-rome-iod-ccd-chipshots-39-billion-transistors/.
- ↑ Friedman, Alan (December 14, 2019). "5nm Kirin 1020 SoC tipped for next year's Huawei Mate 40 line" (in en-US). https://www.phonearena.com/news/Huawei-tipped-to-develop-new-flagship-chip-for-Mate-40_id121102.
- ↑ Verheyde, Arne (December 5, 2019). "Amazon Compares 64-core ARM Graviton2 to Intel's Xeon" (in en). https://www.tomshardware.com/news/amazon-web-services-takes-on-intel-with-64-core-arm-graviton2.
- ↑ Morgan, Timothy Prickett (2019-12-03). "Finally: AWS Gives Servers A Real Shot In The Arm" (in en-US). https://www.nextplatform.com/2019/12/03/finally-aws-gives-servers-a-real-shot-in-the-arm/.
- ↑ Friedman, Alan (October 10, 2019). "Qualcomm will reportedly introduce the Snapdragon 865 SoC as soon as next month" (in en-US). https://www.phonearena.com/news/Qualcomm-to-unveil-the-Snapdragon-865-chipset-as-soon-as-next-month_id119548.
- ↑ "Xiaomi Mi 10 Teardown Analysis | TechInsights". https://www.techinsights.com/blog/xiaomi-mi-10-teardown-analysis#:~:text=We%20have%20die%20photos%20ready,die%20HG11-PC761-2..
- ↑ "The Linley Group - TI Jacinto Accelerates Level 3 ADAS". https://www.linleygroup.com/newsletters/newsletter_detail.php?num=6130&year=2020&tag=3.
- ↑ "Apple unveils A14 Bionic processor with 40% faster CPU and 11.8 billion transistors" (in en-US). 2020-11-10. https://venturebeat.com/2020/09/15/apple-unveils-a14-bionic-processor-with-40-faster-cpu-and-11-8-billion-transistors/.
- ↑ "Apple says new Arm-based M1 chip offers the 'longest battery life ever in a Mac'" (in en-US). 2020-11-10. https://www.theverge.com/2020/11/10/21558095/apple-silicon-m1-chip-arm-macs-soc-charge-power-efficiency-mobile-processor/.
- ↑ Ikoba, Jed John (2020-10-23). "Multiple benchmark tests rank the Kirin 9000 as one of the most-powerful chipset yet" (in en-US). https://www.gizmochina.com/2020/10/23/multiple-benchmark-tests-rank-the-kirin-9000-as-one-of-the-most-powerful-chipset-yet/.
- ↑ Frumusanu, Andrei. "Huawei Announces Mate 40 Series: Powered by 15.3bn Transistors 5nm Kirin 9000". https://www.anandtech.com/show/16156/huawei-announces-mate-40-series.
- ↑ 152.0 152.1 Burd, Thomas (2022). "2.7 Zen3: The AMD 2nd-Generation 7nm x86-64 Microprocessor Core". pp. 54–56.
- ↑ "For a long time, Intel once again named the number of transistors in the chip. There are supposed to be about 6 billion for Rocket Lake-S. Coffee Lake-S is supposed to have about 4 billion. The chip with eight cores is about 30 % bigger than the predecessor with ten core" (in en). https://twitter.com/aschilling/status/1371845970581975050.
- ↑ "Intel's Core i7-11700K 'Rocket Lake' Delidded: A Big Die, Revealed" (in en). March 12, 2021. https://www.tomshardware.com/news/intel-rocket-lake-delidded.
- ↑ "Intel's 14nm density" (in en). https://www.techcenturion.com/7nm-10nm-14nm-fabrication.
- ↑ "AMD Ryzen 7 5800H Specs" (in en). https://www.techpowerup.com/cpu-specs/ryzen-7-5800h.c2368.
- ↑ "AMD Epyc 7763 specifications". August 2023. https://www.techpowerup.com/cpu-specs/epyc-7763.c2373.
- ↑ Shankland, Stephen. "Apple's A15 Bionic chip powers iPhone 13 with 15 billion transistors, new graphics and AI" (in en). https://www.cnet.com/tech/mobile/apples-a15-bionic-chip-powers-iphone-13-with-15-billion-transistors-new-graphics-and-ai/.
- ↑ "Apple iPhone 13 Pro Teardown | TechInsights". https://www.techinsights.com/blog/teardown/apple-iphone-13-pro-teardown.
- ↑ 160.0 160.1 "Apple unveils M1 Pro and M1 Max chips for latest MacBook Pro laptops". VentureBeat. 18 October 2021. https://venturebeat.com/2021/10/18/apple-unveils-m1-pro-and-m1-max-chips-for-latest-macbook-pro-laptops/.
- ↑ "Apple Announces M1 Pro & M1 Max: Giant New Arm SoCs with All-Out Performance" (in en). https://www.anandtech.com/show/17019/apple-announced-m1-pro-m1-max-giant-new-socs-with-allout-performance.
- ↑ "Apple unveils new computer chips amid shortage". BBC News. 19 October 2021. https://www.bbc.com/news/technology-58917992.
- ↑ 163.0 163.1 "Apple Joins 3D-Fabric Portfolio with M1 Ultra?". https://www.techinsights.com/blog/apple-joins-3d-fabric-portfolio-m1-ultra.
- ↑ "Hot Chips 2020 live blog". 2020-08-17. https://www.anandtech.com/show/15985/hot-chips-2020-live-blog-ibms-power10-processor-on-samsung-7nm-1000am-pt.
- ↑ "Phantom X2 Series 5G powered by MediaTek Dimensity 9000". 2022-12-12. https://www.mediatek.com/blog/phantom-x2-series-5g-powered-by-mediatek-dimensity-9000.
- ↑ "MediaTek Dimensity 9000". 2023-01-21. https://www.mediatek.com/products/smartphones-2/mediatek-dimensity-9000.
- ↑ "Apple A16 Bionic announced for the iPhone 14 Pro and iPhone 14 Pro Max". 2022-09-07. https://www.notebookcheck.net/Apple-A16-Bionic-announced-for-the-iPhone-14-Pro-and-iPhone-14-Pro-Max.647967.0.html.
- ↑ "iPhone 14 Pro and Pro Max Only Models to Get New A16 Chip". 2022-09-07. https://www.cnet.com/tech/mobile/iphone-14-pro-and-pro-max-only-models-to-get-new-a16-chip/.
- ↑ "The Apple 2022 Fall iPhone Event Live Blog". 2022-09-07. https://www.anandtech.com/print/17563/the-apple-2022-fall-iphone-event-live-blog-10am-pt-1700-utc.
- ↑ "Apple unveils M1 Ultra, the world's most powerful chip for a personal computer". https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/.
- ↑ Shankland, Stephen. "Meet Apple's Enormous 20-Core M1 Ultra Processor, the Brains in the New Mac Studio Machine" (in en). CNET. https://www.cnet.com/tech/computing/m1-ultra-apple-just-unveiled-its-most-powerful-chip-yet/.
- ↑ 172.0 172.1 "AMD releases Milan-X CPUs". 2022-03-21. https://www.anandtech.com/print/17323/amd-releases-milan-x-cpus-with-3d-vcache-epyc-7003.
- ↑ "IBM Telum Hot Chips slide deck". 2021-08-23. https://hc33.hotchips.org/assets/program/conference/day1/HC2021.C1.3%20IBM%20Cristian%20Jacobi%20Final.pdf.
- ↑ "IBM z16 announcement". 2022-04-05. https://newsroom.ibm.com/2022-04-05-Announcing-IBM-z16-Real-time-AI-for-Transaction-Processing-at-Scale-and-Industrys-First-Quantum-Safe-System.
- ↑ "Apple unveils M2, taking the breakthrough performance and capabilities of M1 even further". 2022-06-06. https://www.apple.com/newsroom/2022/06/apple-unveils-m2-with-breakthrough-performance-and-capabilities/.
- ↑ "MediaTek Dimensity 9200: New flagship chipset debuts with ARM Cortex-X3 CPU and Immortalis-G715 GPU cores built around TSMC N4P node". 2022-11-08. https://www.notebookcheck.net/MediaTek-Dimensity-9200-New-flagship-chipset-debuts-with-ARM-Cortex-X3-CPU-and-Immortalis-G715-GPU-cores-built-around-TSMC-N4P-node.667041.0.html.
- ↑ "Dimensity 9200 specs". 2022-11-08. https://www.mediatek.com/products/smartphones-2/mediatek-dimensity-9200.
- ↑ "Dimensity 9200 presentation". 2022-11-08. https://i.mediatek.com/dimensity-9200.
- ↑ "AMD EPYC Genoa Gaps Intel Xeon in Stunning Fashion". 2022-11-10. https://www.servethehome.com/amd-epyc-genoa-gaps-intel-xeon-in-stunning-fashion/.
- ↑ "Innovation for the Next Decade of Compute Efficiency – slides from ISSCC 2023 talk and link to video". 2023-02-21. https://quasarzone.com/bbs/qn_hardware/views/1426552.
- ↑ "AMD Aims to Break the ZettaFLOP Barrier by 2035, Lays Down Next-Gen Plans to Resolve Efficiency Problems". 2023-02-21. https://appuals.com/amd-zettaflop-plans/.
- ↑ "AMD Lays The Path To Zettascale Computing: Talks CPU & GPU Performance Plus Efficiency Trends, Next-Gen Chiplet Packaging & More". 2023-02-20. https://wccftech.com/amd-lays-the-path-to-zettascale-computing-talks-cpu-gpu-performance-plus-efficiency-trends-next-gen-chiplet-packaging-more/.
- ↑ "AMD EPYC Genoa & SP5 Platform Leaked – 5nm Zen 4 CCD Measures Roughly 72mm, 12 CCD Package at 5428mm2, Up To 700W Peak Socket Power". 2021-08-17. https://wccftech.com/amd-epyc-genoa-zen-4-server-cpus-and-sp5-lga-6096-server-platform-details-leaked/.
- ↑ "Leaked AMD Epyc Genoa Docs Reveal 96 Cores, Max TDP of 700W, and Zen 4 Chiplet Dimensions". 2021-08-17. https://www.hardwaretimes.com/leaked-amd-epyc-genoa-docs-reveal-96-cores-max-tdp-of-700w-and-zen-4-chiplet-dimensions/.
- ↑ "Kirin 9000S has about 6 billion fewer transistors than Kirin 9000, but its performance is stronger! How did you do it?" (in en-US). September 13, 2023. https://inf.news/en/news/fe8aae471cb54698f4ddac2d2baf1abd.html.
- ↑ 186.0 186.1 186.2 "Apple introduces new M3 chip lineup, starting with the M3, M3 Pro, and M3 Max". 2023-10-31. https://arstechnica.com/gadgets/2023/10/everything-to-know-about-apples-new-m3-m3-pro-and-m3-max-processors/.
- ↑ Goldman, Joshua. "Apple A17 Pro Chip: The New Brain Inside iPhone 15 Pro, Pro Max" (in en). https://www.cnet.com/tech/mobile/apple-a17-pro-chip-the-new-brain-inside-iphone-15-pro/.
- ↑ "4th Gen Intel Xeon Scalable Sapphire Rapids Leaps Forward". 2023-01-10. https://www.servethehome.com/4th-gen-intel-xeon-scalable-sapphire-rapids-leaps-forward/.
- ↑ "Wie vier Dies zu einem "monolithischen" Sapphire Rapids werden". 2022-02-21. https://www.hardwareluxx.de/index.php/news/hardware/prozessoren/58175-isscc-2022-wie-vier-dies-zu-einem-monolithischen-sapphire-rapids-werden.html.
- ↑ 190.0 190.1 "Apple unveils M2 Pro and M2 Max: next-generation chips for next-level workflows". Apple (Press release). 2023-01-17.
- ↑ "AMD EPYC Bergamo Launched 128 Cores Per Socket and 1024 Threads Per 1U". 2023-06-13. https://www.servethehome.com/amd-epyc-bergamo-launched-128-cores-per-socket-and-1024-threads-per-1u/.
- ↑ "AMD Instinct MI300A Accelerators". https://www.amd.com/en/products/accelerators/instinct/mi300/mi300a.html.
- ↑ Alcorn, Paul (December 6, 2023). "AMD unveils Instinct MI300X GPU and MI300A APU, claims up to 1.6X lead over Nvidia's competing GPUs". https://www.tomshardware.com/pc-components/cpus/amd-unveils-instinct-mi300x-gpu-and-mi300a-apu-claims-up-to-16x-lead-over-nvidias-competing-gpus.
- ↑ Williams, Chris. "Nvidia's Tesla P100 has 15 billion transistors, 21TFLOPS". https://www.theregister.co.uk/2016/04/05/nvidia_gtc_telsa_p100_pascal/.
- ↑ "Famous Graphics Chips: NEC μPD7220 Graphics Display Controller". Institute of Electrical and Electronics Engineers. August 22, 2018. https://www.computer.org/publications/tech-news/chasing-pixels/famous-graphics-chips.
- ↑ "GPU History: Hitachi ARTC HD63484. The second graphics processor.". Institute of Electrical and Electronics Engineers. October 7, 2018. https://www.computer.org/publications/tech-news/chasing-pixels/gpu-history-hitachi-artc-hd63484.
- ↑ "Big Book of Amiga Hardware". https://bboah.com/index.php?action=artikel&cat=51&id=2174.
- ↑ MOS Technology Agnus. ISBN 5511916846.
- ↑ 199.0 199.1 "30 Years of Console Gaming". 20 August 2017. https://klingerphotography.com/wp/2017/08/20/30-years-console-gaming/.
- ↑ "Sega Saturn". https://github.com/mamedev/mame/blob/master/src/mame/drivers/saturn.cpp.
- ↑ "ASIC CHIPS ARE INDUSTRY'S GAME WINNERS". The Washington Post. 18 September 1995. https://www.washingtonpost.com/archive/business/1995/09/18/asic-chips-are-industrys-game-winners/50bcb622-e890-4d46-803f-39e007c489ca/.
- ↑ "Is it Time to Rename the GPU?". Jon Peddie Research. IEEE Computer Society. 2018-07-09. https://www.computer.org/publications/tech-news/chasing-pixels/is-it-time-to-rename-the-gpu.
- ↑ "FastForward Sony Taps LSI Logic for PlayStation Video Game CPU Chip". FastForward. http://patpend.net/technical/psx/LSI.htm.
- ↑ 205.0 205.1 "Reality Co-Processor − The Power In Nintendo64". Silicon Graphics. August 26, 1997. http://www.hotchips.org/wp-content/uploads/hc_archives/hc09/3_Tue/HC9.S10/HC9.10.2.pdf.
- ↑ "Imagination PowerVR PCX2 GPU". https://videocardz.net/gpu/imagination-powervr-pcx2/.
- ↑ 207.0 207.1 207.2 207.3 207.4 207.5 207.6 207.7 Lilly, Paul (19 May 2009). "From Voodoo to GeForce: The Awesome History of 3D Graphics". PC Gamer. https://www.pcgamer.com/from-voodoo-to-geforce-the-awesome-history-of-3d-graphics/. Retrieved 19 June 2019.
- ↑ 208.00 208.01 208.02 208.03 208.04 208.05 208.06 208.07 208.08 208.09 208.10 208.11 208.12 208.13 208.14 208.15 208.16 208.17 208.18 208.19 208.20 208.21 208.22 208.23 208.24 208.25 208.26 208.27 208.28 208.29 208.30 208.31 208.32 208.33 208.34 208.35 208.36 208.37 208.38 "3D accelerator database". http://vintage3d.org/dbn.php.
- ↑ "RIVA128 Datasheet". SGS Thomson Microelectronics. http://www.datasheetcatalog.com/datasheets_pdf/R/I/V/A/RIVA128.shtml.
- ↑ 210.0 210.1 210.2 Singer, Graham (April 3, 2013). "History of the Modern Graphics Processor, Part 2". https://www.techspot.com/article/653-history-of-the-gpu-part-2/.
- ↑ "Remembering the Sega Dreamcast". September 29, 2009. https://bit-tech.net/reviews/gaming/retro/remembering-the-sega-dreamcast/3/.
- ↑ Weinberg, Neil (September 7, 1998). "Comeback kid". Forbes. https://www.forbes.com/global/1998/0907/0111082a.html.
- ↑ Charles, Bertie (1998). "Sega's New Dimension". Forbes (Forbes Incorporated) 162 (5–9): 206. https://books.google.com/books?id=rCO8AAAAIAAJ. "The chip, etched in 0.25-micron detail — state-of-the-art for graphics processors — fits 10 million transistors".
- ↑ Hagiwara, Shiro; Oliver, Ian (November–December 1999). "Sega Dreamcast: Creating a Unified Entertainment World". IEEE Micro (IEEE Computer Society) 19 (6): 29–35. doi:10.1109/40.809375. http://computer.org/micro/articles/dreamcast_2.htm. Retrieved 27 June 2019.
- ↑ "VideoLogic Neon 250 4MB". https://videocardz.net/videologic-neon-250-4mb/.
- ↑ Shimpi, Anand Lal (November 21, 1998). "Fall Comdex '98 Coverage". AnandTech. https://www.anandtech.com/show/103/6.
- ↑ 217.0 217.1 217.2 "EMOTION ENGINE AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION BECOME ONE CHIP". Sony. April 21, 2003. https://www.sie.com/content/dam/corporate/en/corporate/release/pdf/030421be.pdf.
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedhennessy
- ↑ "NVIDIA NV10 A3 GPU Specs". https://www.techpowerup.com/gpu-specs/nvidia-nv10-a3.g165.
- ↑ IGN Staff (November 4, 2000). "Gamecube Versus PlayStation 2". IGN. https://ign.com/articles/2000/11/04/gamecube-versus-playstation-2.
- ↑ "NVIDIA NV2A GPU Specs". https://www.techpowerup.com/gpu-specs/nvidia-nv2a.g401.
- ↑ "ATI Xenos GPU Specs". https://www.techpowerup.com/gpu-specs/ati-xenos.g424.
- ↑ International, GamesIndustry (14 July 2005). "TSMC to manufacture X360 GPU". Eurogamer. https://www.eurogamer.net/articles/news140705tsmc.
- ↑ "NVIDIA Playstation 3 RSX 65nm Specs". https://www.techpowerup.com/gpu-specs/playstation-3-rsx-65nm.c1682.
- ↑ "PS3 Graphics Chip Goes 65nm in Fall". Edge Online. 2008-06-26. http://www.edge-online.com/news/ps3-graphics-chip-goes-65nm-fall/.
- ↑ "NVIDIA's 1.4 Billion Transistor GPU: GT200 Arrives as the GeForce GTX 280 & 260". AnandTech.com. http://www.anandtech.com/video/showdoc.aspx?i=3334.
- ↑ "The Radeon HD 4850 & 4870: AMD Wins at $199 and $299". AnandTech.com. http://www.anandtech.com/video/showdoc.aspx?i=3341.
- ↑ 228.0 228.1 Glaskowsky, Peter. "ATI and Nvidia face off-obliquely". CNET. http://news.cnet.com/8301-13512_3-10369441-23.html.
- ↑ Woligroski, Don (2011-12-22). "AMD Radeon HD 7970". TomsHardware.com. http://www.tomshardware.com/reviews/radeon-hd-7970-benchmark-tahiti-gcn,3104.html.
- ↑ "NVIDIA Kepler GK110 Architecture". NVIDIA. 2012. https://staff.cs.manchester.ac.uk/~fumie/internal/KeplerArchitecture.pdf.
- ↑ Smith, Ryan (November 12, 2012). "NVIDIA Launches Tesla K20 & K20X: GK110 Arrives At Last". AnandTech. http://www.anandtech.com/show/6446/nvidia-launches-tesla-k20-k20x-gk110-arrives-at-last.
- ↑ "Whitepaper: NVIDIA GeForce GTX 680". NVIDIA. 2012. http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf.
- ↑ 233.0 233.1 Kan, Michael (18 August 2020). "Xbox Series X May Give Your Wallet a Workout Due to High Chip Manufacturing Costs". PCMag. https://uk.pcmag.com/video-game-consoles/128235/xbox-series-x-may-give-your-wallet-a-workout-due-to-high-chip-manufacturing-costs.
- ↑ "AMD Xbox One GPU". https://www.techpowerup.com/gpu-specs/xbox-one-gpu.c2086.
- ↑ "AMD PlayStation 4 GPU". https://www.techpowerup.com/gpu-specs/playstation-4-gpu.c2085.
- ↑ "AMD Xbox One S GPU". https://www.techpowerup.com/gpu-specs/xbox-one-s-gpu.c2866.
- ↑ "AMD PlayStation 4 Pro GPU". https://www.techpowerup.com/gpu-specs/playstation-4-pro-gpu.c2876.
- ↑ Smith, Ryan (29 June 2016). "The AMD RX 480 Preview". Anandtech.com. http://www.anandtech.com/show/10446/the-amd-radeon-rx-480-preview.
- ↑ 239.0 239.1 239.2 Schor, David (2018-07-22). "VLSI 2018: GlobalFoundries 12nm Leading-Performance, 12LP". https://fuse.wikichip.org/news/1497/vlsi-2018-globalfoundries-12nm-leading-performance-12lp/.
- ↑ Harris, Mark (April 5, 2016). "Inside Pascal: NVIDIA's Newest Computing Platform". https://devblogs.nvidia.com/parallelforall/inside-pascal/.
- ↑ 241.0 241.1 241.2 241.3 241.4 241.5 "GPU Database: Pascal". July 26, 2023. https://www.techpowerup.com/gpu-specs/?architecture=Pascal&sort=generation.
- ↑ "AMD Xbox One X GPU". https://www.techpowerup.com/gpu-specs/xbox-one-x-gpu.c2977.
- ↑ "Radeon's next-generation Vega architecture". http://radeon.com/_downloads/vega-whitepaper-11.6.17.pdf.
- ↑ Durant, Luke; Giroux, Olivier; Harris, Mark; Stam, Nick (May 10, 2017). "Inside Volta: The World's Most Advanced Data Center GPU". https://devblogs.nvidia.com/parallelforall/inside-volta/.
- ↑ "NVIDIA TURING GPU ARCHITECTURE: Graphics Reinvented". Nvidia. 2018. https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf.
- ↑ "NVIDIA GeForce GTX 1650". https://www.techpowerup.com/gpu-specs/geforce-gtx-1650.c3366.
- ↑ "NVIDIA GeForce GTX 1660 Ti". https://www.techpowerup.com/gpu-specs/geforce-gtx-1660-ti.c3364.
- ↑ "AMD Radeon RX 5700 XT". https://www.techpowerup.com/gpu-specs/radeon-rx-5700-xt.c3339.
- ↑ "AMD Radeon RX 5500 XT". https://www.techpowerup.com/gpu-specs/radeon-rx-5500-xt.c3468.
- ↑ "AMD Arcturus GPU Specs". https://www.techpowerup.com/gpu-specs/amd-arcturus.g927.
- ↑ Walton, Jared (May 14, 2020). "Nvidia Unveils Its Next-Generation 7nm Ampere A100 GPU for Data Centers, and It's Absolutely Massive". Tom's Hardware. https://www.tomshardware.com/news/nvidia-ampere-A100-gpu-7nm.
- ↑ "Nvidia Ampere Architecture". https://www.nvidia.com/en-gb/data-center/nvidia-ampere-gpu-architecture/.
- ↑ "NVIDIA GA102 GPU Specs". Techpowerup. https://www.techpowerup.com/gpu-specs/nvidia-ga102.g930.
- ↑ "'Giant Step into the Future': NVIDIA CEO Unveils GeForce RTX 30 Series GPUs". September 2020. https://blogs.nvidia.com/blog/2020/09/01/nvidia-ceo-geforce-rtx-30-series-gpus.
- ↑ "NVIDIA GA103 GPU Specs" (in en). https://www.techpowerup.com/gpu-specs/nvidia-ga103.g989.
- ↑ "NVIDIA GeForce RTX 3070 Specs" (in en). https://www.techpowerup.com/gpu-specs/geforce-rtx-3070.c3674.
- ↑ "NVIDIA GA106 specs". https://www.techpowerup.com/gpu-specs/nvidia-ga106.g966.
- ↑ "NVIDIA GA107 GPU Specs" (in en). https://www.techpowerup.com/gpu-specs/nvidia-ga107.g988.
- ↑ "MI250X die size estimates". 2021-11-17. https://twitter.com/Locuza_/status/1460987998934384640.
- ↑ "AMD Instinct MI250 Professional Graphics Card". 2022-11-02. https://videocardz.net/amd-instinct-mi250.
- ↑ "AMD's Instinct MI250X OAM Card Pictured: Aldebaran's Massive Die Revealed". 2021-11-17. https://www.tomshardware.com/news/amd-instinct-mi250x-pictured.
- ↑ "AMD MI250X and Toplogies Explained at HC34". 2022-08-22. https://www.servethehome.com/amd-mi250x-and-toplogies-explained-at-hc34-hpe-gigabyte-supermicro/.
- ↑ "Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips" (in en). March 22, 2022. https://www.hpcwire.com/2022/03/22/nvidia-launches-hopper-h100-gpu-new-dgxs-and-grace-megachips/.
- ↑ "NVIDIA details AD102 GPU, up to 18432 CUDA cores, 76.3B transistors and 608 mm2". 2022-09-20. https://videocardz.com/newz/nvidia-details-ad102-gpu-up-to-18432-cuda-cores-76-3b-transistors-and-608-mm%C2%B2.
- ↑ 265.0 265.1 "NVIDIA confirms Ada 102/103/104 GPU specs, AD104 has more transistors than GA102". 2022-09-23. https://videocardz.com/newz/nvidia-confirms-ada-102-103-104-gpu-specs-ad104-has-more-transistors-than-ga102.
- ↑ 266.0 266.1 "Alleged Nvidia AD106 and AD107 GPU Pics, Specs, Die Sizes Revealed". 2023-02-03. https://www.tomshardware.com/news/nvidia-ad106-and-ad107-gpus-pictured.
- ↑ "NVIDIA GeForce RTX 4060 Ti "AD106-350" GPU Pictured, Uses Samsung GDDR6 Dies". 2023-04-28. https://wccftech.com/nvidia-geforce-rtx-4060-ti-ad106-350-gpu-pictured-uses-samsung-gddr6-dies/.
- ↑ "NVIDIA's Smallest Ada GPU, The AD107-400, For GeForce RTX 4060 GPUs Pictured". 2023-05-21. https://wccftech.com/nvidias-smallest-ada-gpu-the-ad107-400-for-geforce-rtx-4060-gpus-pictured/.
- ↑ "AMD Unveils World's Most Advanced Gaming Graphics Cards, Built on Groundbreaking AMD RDNA 3 Architecture with Chiplet Design". AMD (Press release). 2022-11-03.
- ↑ "AMD Announces the $999 Radeon RX 7900 XTX... (endnote RX-819)". 2022-11-04. https://www.techpowerup.com/300632/amd-announces-the-usd-999-radeon-rx-7900-xtx-and-usd-899-rx-7900-xt-5nm-rdna3-displayport-2-1-fsr-3-0-fluidmotion.
- ↑ "AMD Navi 31 GPU Specs" (in en). https://www.techpowerup.com/gpu-specs/amd-navi-31.g998.
- ↑ "AMD Navi 32 GPU Specs" (in en). https://www.techpowerup.com/gpu-specs/amd-navi-32.g1000.
- ↑ "AMD Navi 33 GPU Specs" (in en). https://www.techpowerup.com/gpu-specs/amd-navi-33.g1001.
- ↑ "AMD Has a GPU to Rival Nvidia's H100" (in en). June 13, 2023. https://www.hpcwire.com/2023/06/13/amd-has-a-gpu-to-rival-nvidias-h100/.
- ↑ "AMD Aqua Vanjaram Specs". https://www.techpowerup.com/gpu-specs/amd-aqua-vanjaram.g1023.
- ↑ "Taiwan Company UMC Delivers 65nm FPGAs to Xilinx." SDA-ASIA Thursday, November 9, 2006.
- ↑ ""Altera's new 40nm FPGAs — 2.5 billion transistors!". pldesignline.com. http://www.pldesignline.com/207800871.
- ↑ "Altera unveils 28-nm Stratix V FPGA family". April 20, 2010. http://www.siliconindia.com/shownews/Altera_unveils_28nm_Stratix_V_FPGA_family-nid-67225.html.
- ↑ "Design of a High-Density SoC FPGA at 20nm". 2014. https://www.hotchips.org/wp-content/uploads/hc_archives/hc26/HC26-12-day2-epub/HC26.12-5-FPGAs-epub/HC26.12.510-SoC-FPGA-20nm-Vest-Altera.pdf.
- ↑ Maxfield, Clive (October 2011). "New Xilinx Virtex-7 2000T FPGA provides equivalent of 20 million ASIC gates". EETimes (AspenCore). https://www.eetimes.com/document.asp?doc_id=1316816. Retrieved September 4, 2019.
- ↑ Greenhill, D.; Ho, R.; Lewis, D.; Schmit, H.; Chan, K. H.; Tong, A.; Atsatt, S.; How, D. et al. (February 2017). "3.3 a 14nm 1GHz FPGA with 2.5D transceiver integration". 2017 IEEE International Solid-State Circuits Conference (ISSCC). pp. 54–55. doi:10.1109/ISSCC.2017.7870257. ISBN 978-1-5090-3758-2.
- ↑ "3.3 A 14nm 1GHz FPGA with 2.5D transceiver integration | DeepDyve". 2017-05-17. https://www.deepdyve.com/lp/institute-of-electrical-and-electronics-engineers/3-3-a-14nm-1ghz-fpga-with-2-5d-transceiver-integration-dOpKM0jD74.
- ↑ Santarini, Mike (May 2014). "Xilinx Ships Industry's First 20-nm All Programmable Devices". Xcell journal (Xilinx) (86): 14. http://www.xilinx.com/publications/archives/xcell/Xcell86.pdf. Retrieved June 3, 2014.
- ↑ Gianelli, Silvia (January 2015). "Xilinx Delivers the Industry's First 4M Logic Cell Device, Offering >50M Equivalent ASIC Gates and 4X More Capacity than Competitive Alternatives". https://www.xilinx.com/news/press/2015/xilinx-delivers-the-industry-s-first-4m-logic-cell-device-offering-50m-equivalent-asic-gates-and-4x-more-capacity-than-competitive-alternatives.html.
- ↑ Sims, Tara (August 2019). "Xilinx Announces the World's Largest FPGA Featuring 9 Million System Logic Cells". https://www.xilinx.com/news/press/2019/xilinx-announces-the-world-s-largest-fpga-featuring-9-million-system-logic-cells.html.
- ↑ Verheyde, Arne (August 2019). "Xilinx Introduces World's Largest FPGA With 35 Billion Transistors". https://www.tomshardware.com/news/xilinx-world-largest-fpga,40212.html.
- ↑ Cutress, Ian (August 2019). "Xilinx Announces World Largest FPGA: Virtex Ultrascale+ VU19P with 9m Cells". https://www.anandtech.com/show/14798/xilinx-announces-world-largest-fpga-virtex-ultrascale-vu19p-with-9m-cells.
- ↑ Abazovic, Fuad (May 2019). "Xilinx 7nm Versal taped out last year". https://fudzilla.com/news/ai/48791-xilinx-7nm-versal-taped-out-last-year.
- ↑ Cutress, Ian (August 2019). "Hot Chips 31 Live Blogs: Xilinx Versal AI Engine". https://www.anandtech.com/show/14768/hot-chips-31-live-blogs-xilinx-versal-ai-engine.
- ↑ Krewell, Kevin (August 2019). "Hot Chips 2019 highlights new AI strategies". https://www.electronicproducts.com/News/Hot_Chips_2019_highlights_new_AI_strategies.aspx.
- ↑ Leibson, Steven (2019-11-06). "Intel announces Intel Stratix 10 GX 10M FPGA, worlds highest capacity with 10.2 million logic elements". https://blogs.intel.com/psg/intel-announces-intel-stratix-10-gx-10m-fpga-worlds-highest-capacity-with-10-2-million-logic-elements-targets-asic-prototyping-and-emulation-markets/.
- ↑ Verheyde, Arne (2019-11-06). "Intel Introduces World's Largest FPGA With 43.3 Billion Transistors". https://www.tomshardware.com/news/intel-introduces-worlds-largest-fpga-with-433-billion-transistors.
- ↑ Cutress, Ian (August 2020). "Hot Chips 2020 Live Blog: Xilinx Versal ACAPs". https://www.anandtech.com/show/16002/hot-chips-2020-live-blog-xilinx-versal-acaps-900am-pt.
- ↑ "Xilinx Announces Full Production Shipments of 7nm Versal AI Core and Versal Prime Series Devices". April 27, 2021. https://www.xilinx.com/news/press/2021/xilinx-announces-full-production-shipments-of-7nm-versal-ai-core-and-versal-prime-series-devices.html.
- ↑ 295.0 295.1 The DRAM memory of Robert Dennard history-computer.com
- ↑ 296.0 296.1 296.2 296.3 "Late 1960s: Beginnings of MOS memory". 2019-01-23. http://www.shmj.or.jp/english/pdf/ic/exhibi718E.pdf.
- ↑ 297.0 297.1 297.2 297.3 297.4 297.5 "1970: Semiconductors compete with magnetic cores". https://www.computerhistory.org/storageengine/semiconductors-compete-with-magnetic-cores/.
- ↑ "2.1.1 Flash Memory". http://www.iue.tuwien.ac.at/phd/windbacher/node14.html.
- ↑ Shilov, Anton. "SK Hynix Starts Production of 128-Layer 4D NAND, 176-Layer Being Developed". https://www.anandtech.com/show/14589/sk-hynix-128-layer-4d-nand.
- ↑ "Samsung Begins Production of 100+ Layer Sixth-Generation V-NAND Flash". 2019-08-11. https://pcper.com/2019/08/samsung-begins-production-of-100-layer-sixth-generation-v-nand-flash/.
- ↑ 301.0 301.1 "1966: Semiconductor RAMs Serve High-speed Storage Needs". https://www.computerhistory.org/siliconengine/semiconductor-rams-serve-high-speed-storage-needs/.
- ↑ "Specifications for Toshiba "TOSCAL" BC-1411". http://www.oldcalculatormuseum.com/s-toshbc1411.html.
- ↑ "Toshiba "Toscal" BC-1411 Desktop Calculator". http://www.oldcalculatormuseum.com/toshbc1411.html.
- ↑ IBM first in IC memory. IBM Corporation. 1965. https://www.computerhistory.org/collections/catalog/102770626. Retrieved 19 June 2019.
- ↑ 305.00 305.01 305.02 305.03 305.04 305.05 305.06 305.07 305.08 305.09 305.10 305.11 305.12 "A chronological list of Intel products. The products are sorted by date.". Intel museum. Intel Corporation. July 2005. http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf.
- ↑ 306.0 306.1 "1970s: SRAM evolution". http://www.shmj.or.jp/english/pdf/ic/exhibi724E.pdf.
- ↑ 307.0 307.1 307.2 Pimbley, J. (2012). Advanced CMOS Process Technology. Elsevier. p. 7. ISBN 9780323156806. https://books.google.com/books?id=8EUWHSqevQoC&pg=PA7.
- ↑ 308.0 308.1 "Intel: 35 Years of Innovation (1968–2003)". Intel. 2003. https://www.intel.com/Assets/PDF/General/35yrs.pdf.
- ↑ 309.0 309.1 Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 362–363. ISBN 9783540342588. https://books.google.com/books?id=2cu1Oh_COv8C&pg=PA362. "The i1103 was manufactured on a 6-mask silicon-gate P-MOS process with 8 μm minimum features. The resulting product had a 2,400 μm2 memory cell size, a die size just under 10 mm2, and sold for around $21."
- ↑ "Manufacturers in Japan enter the DRAM market and integration densities are improved". http://www.shmj.or.jp/english/pdf/ic/exhibi745E.pdf.
- ↑ 311.00 311.01 311.02 311.03 311.04 311.05 311.06 311.07 311.08 311.09 311.10 311.11 311.12 311.13 Gealow, Jeffrey Carl (10 August 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design". Massachusetts Institute of Technology. pp. 149–166. https://core.ac.uk/download/pdf/4426308.pdf.
- ↑ "Silicon Gate MOS 2102A". Intel. https://drive.google.com/file/d/0B9rh9tVI0J5mMmZlYWRlMDQtNDYzYS00OWJkLTg4YzYtZDYzMzc5Y2ZlYmVk/view.
- ↑ "One of the Most Successful 16K Dynamic RAMs: The 4116". Smithsonian Institution. http://smithsonianchips.si.edu/augarten/p50.htm.
- ↑ Component Data Catalog. Intel. 1978. pp. 3–94. http://bitsavers.trailing-edge.com/components/intel/_dataBooks/1978_Intel_Component_Data_Catalog.pdf. Retrieved 27 June 2019.
- ↑ 315.00 315.01 315.02 315.03 315.04 315.05 315.06 315.07 315.08 315.09 315.10 315.11 315.12 315.13 315.14 315.15 315.16 315.17 315.18 315.19 "Memory". http://maltiel-consulting.com/Semiconductor_technology_memory.html.
- ↑ "The Cutting Edge of IC Technology: The First 294,912-Bit (288K) Dynamic RAM". Smithsonian Institution. http://smithsonianchips.si.edu/augarten/p66.htm.
- ↑ "Computer History for 1984". https://www.computerhope.com/history/1984.htm.
- ↑ "Japanese Technical Abstracts". Japanese Technical Abstracts (University Microfilms) 2 (3–4): 161. 1987. https://books.google.com/books?id=Fa0kAQAAIAAJ. "The announcement of 1M DRAM in 1984 began the era of megabytes.".
- ↑ "KM48SL2000-7 Datasheet". Samsung. August 1992. https://www.datasheetarchive.com/KM48SL2000-7-datasheet.html.
- ↑ "Electronic Design". Electronic Design (Hayden Publishing Company) 41 (15–21). 1993. https://books.google.com/books?id=QmpJAQAAIAAJ. "The first commercial synchronous DRAM, the Samsung 16-Mbit KM48SL2000, employs a single-bank architecture that lets system designers easily transition from asynchronous to synchronous systems.".
- ↑ Breaking the gigabit barrier, DRAMs at ISSCC portend major system-design impact. (dynamic random access memory; International Solid-State Circuits Conference; Hitachi Ltd. and NEC Corp. research and development), January 9, 1995
- ↑ 322.0 322.1 "Japanese Company Profiles". Smithsonian Institution. 1996. http://smithsonianchips.si.edu/ice/cd/PROF96/JAPAN.PDF.
- ↑ 323.0 323.1 "History: 1990s". https://www.skhynix.com/eng/about/history1990.jsp.
- ↑ "Samsung 50nm 2GB DDR3 chips are industry's smallest". SlashGear. 29 September 2008. https://www.slashgear.com/samsung-50nm-2gb-ddr3-chips-are-industrys-smallest-2917676/.
- ↑ Shilov, Anton (July 19, 2017). "Samsung Increases Production Volumes of 8 GB HBM2 Chips Due to Growing Demand". AnandTech. https://www.anandtech.com/show/11643/samsung-increases-8gb-hbm2-production-volume.
- ↑ "Samsung Unleashes a Roomy DDR4 256GB RAM". Tom's Hardware. 6 September 2018. https://www.tomshardware.co.uk/samsung-256gb-ddr4-ram,news-59123.html.
- ↑ "First 3D Nanotube and RRAM ICs Come Out of Foundry". 19 July 2019. https://spectrum.ieee.org/nanoclast/semiconductors/devices/first-3d-nanotube-and-rram-ics-come-out-of-foundry. "This wafer was made just last Friday... and it's the first monolithic 3D IC ever fabricated within a foundry"
- ↑ "Three Dimensional Monolithic System-on-a-Chip". https://www.darpa.mil/program/three-dimensional-monolithic-system-on-a-chip.
- ↑ "DARPA 3DSoC Initiative Completes First Year, Update Provided at ERI Summit on Key Steps Achieved to Transfer Technology into SkyWater's 200mm U.S. Foundry". Skywater Technology Foundry (Press release). 2019-07-25. Retrieved 2019-09-16.
- ↑ "DD28F032SA Datasheet". Intel. http://www.datasheetcatalog.com/datasheets_pdf/D/D/2/8/DD28F032SA.shtml.
- ↑ "TOSHIBA ANNOUNCES 0.13 MICRON 1Gb MONOLITHIC NAND FEATURING LARGE BLOCK SIZE FOR IMPROVED WRITE/ERASE SPEED PERFORMANCE". Toshiba. September 9, 2002. http://www.toshiba.com/taec/news/press_releases/2002/to-230.jsp.
- ↑ "TOSHIBA AND SANDISK INTRODUCE A ONE GIGABIT NAND FLASH MEMORY CHIP, DOUBLING CAPACITY OF FUTURE FLASH PRODUCTS". Toshiba. 12 November 2001. http://www.toshiba.co.jp/about/press/2001_11/pr1202.htm.
- ↑ 333.0 333.1 333.2 333.3 "Our Proud Heritage from 2000 to 2009". Samsung. https://www.samsung.com/semiconductor/about-us/history-03/.
- ↑ "TOSHIBA ANNOUNCES 1 GIGABYTE COMPACTFLASH CARD". Toshiba. September 9, 2002. http://www.toshiba.com/taec/news/press_releases/2002/to-231.jsp.
- ↑ 335.0 335.1 335.2 335.3 "History". Samsung. https://www.samsung.com/us/aboutsamsung/company/history/.
- ↑ 336.0 336.1 "TOSHIBA COMMERCIALIZES INDUSTRY'S HIGHEST CAPACITY EMBEDDED NAND FLASH MEMORY FOR MOBILE CONSUMER PRODUCTS". Toshiba. April 17, 2007. http://www.toshiba.com/taec/news/press_releases/2007/memy_07_470.jsp.
- ↑ 337.0 337.1 "Toshiba Launches the Largest Density Embedded NAND Flash Memory Devices". Toshiba. 7 August 2008. https://www.toshiba.co.jp/about/press/2008_08/pr0701.htm.
- ↑ "Toshiba Launches Industry's Largest Embedded NAND Flash Memory Modules". Toshiba. 17 June 2010. https://www.toshiba.co.jp/about/press/2010_06/pr1701.htm.
- ↑ "Samsung e·MMC Product family". Samsung Electronics. December 2011. http://www.mt-system.ru/sites/default/files/klmxgxge4a-x001mmc4_41_2ynm_based_emmc1_1.pdf.
- ↑ Shilov, Anton (December 5, 2017). "Samsung Starts Production of 512 GB UFS NAND Flash Memory: 64-Layer V-NAND, 860 MB/s Reads". AnandTech. https://www.anandtech.com/show/12120/samsung-starts-production-of-512-gb-ufs-chips.
- ↑ Manners, David (30 January 2019). "Samsung makes 1TB flash eUFS module". Electronics Weekly. https://www.electronicsweekly.com/news/business/samsung-makes-1tb-flash-module-2019-01/.
- ↑ Tallis, Billy (October 17, 2018). "Samsung Shares SSD Roadmap for QLC NAND And 96-layer 3D NAND". AnandTech. https://www.anandtech.com/show/13497/samsung-shares-ssd-roadmap-for-qlc-nand-and-96layer-3d-nand.
- ↑ "Micron's 232 Layer NAND Now Shipping". 2022-07-26. https://www.anandtech.com/print/17509/microns-232-layer-nand-now-shipping.
- ↑ "232-Layer NAND". https://www.micron.com/products/nand-flash/232-layer-nand.
- ↑ "First to Market, Second to None: the World's First 232-Layer NAND". 2022-07-26. https://www.micron.com/about/blog/2022/july/first-to-market-second-to-none-the-worlds-first-232-layer-nand.
- ↑ "Comparison: Latest 3D NAND Products from YMTC, Samsung, SK hynix and Micron". 2023-01-11. https://www.techinsights.com/blog/comparison-latest-3d-nand-products-ymtc-samsung-sk-hynix-and-micron.
- ↑ Han-Way Huang (5 December 2008). Embedded System Design with C805. Cengage Learning. p. 22. ISBN 978-1-111-81079-5. https://books.google.com/books?id=3zRtCgAAQBAJ&pg=PA22.
- ↑ Marie-Aude Aufaure; Esteban Zimányi (17 January 2013). Business Intelligence: Second European Summer School, eBISS 2012, Brussels, Belgium, July 15-21, 2012, Tutorial Lectures. Springer. p. 136. ISBN 978-3-642-36318-4. https://books.google.com/books?id=7iK5BQAAQBAJ&pg=PA136.
- ↑ 349.0 349.1 349.2 349.3 "1965: Semiconductor Read-Only-Memory Chips Appear". https://www.computerhistory.org/siliconengine/semiconductor-read-only-memory-chips-appear/.
- ↑ "1971: Reusable semiconductor ROM introduced". Computer History Museum. https://www.computerhistory.org/storageengine/reusable-semiconductor-rom-introduced/.
- ↑ Iizuka, H.; Masuoka, F.; Sato, Tai; Ishikawa, M. (1976). "Electrically alterable avalanche-injection-type MOS READ-ONLY memory with stacked-gate structure". IEEE Transactions on Electron Devices 23 (4): 379–387. doi:10.1109/T-ED.1976.18415. ISSN 0018-9383. Bibcode: 1976ITED...23..379I.
- ↑ μCOM-43 SINGLE CHIP MICROCOMPUTER: USERS' MANUAL. NEC Microcomputers. January 1978. https://en.wikichip.org/w/images/9/9c/%C2%B5COM-43_SINGLE_CHIP_MICROCOMPUTER_USERS_MANUAL.pdf. Retrieved 27 June 2019.
- ↑ "2716: 16K (2K x 8) UV ERASABLE PROM". Intel. https://amigan.yatho.com/2716EPROM.pdf.
- ↑ "1982 CATALOG". NEC Electronics. http://bitsavers.trailing-edge.com/components/nec/_dataBooks/1982_NEC_Microcomputer_Catalog.pdf.
- ↑ Component Data Catalog. Intel. 1978. pp. 1–3. http://bitsavers.trailing-edge.com/components/intel/_dataBooks/1978_Intel_Component_Data_Catalog.pdf. Retrieved 27 June 2019.
- ↑ "27256 Datasheet". Intel. https://datasheet.octopart.com/D27256-2-Intel-datasheet-17852618.pdf.
- ↑ "History of Fujitsu's Semiconductor Business". Fujitsu. https://www.fujitsu.com/jp/group/fsl/en/business/semiconductor/history/.
- ↑ "D27512-30 Datasheet". Intel. https://www.datasheet.live/index.php?title=Special:PdfViewer&url=https%3A%2F%2Fpdf.datasheet.live%2Fe6dbd5cf%2Fintel.com%2FD27512-30.pdf.
- ↑ "A Computer Pioneer Rediscovered, 50 Years On". The New York Times. April 20, 1994. https://www.nytimes.com/1994/04/20/news/20iht-zuse.html.
- ↑ "History of Computers and Computing, Birth of the modern computer, Relays computer, George Stibitz". https://history-computer.com/ModernComputer/Relays/Stibitz.html. "Initially the 'Complex Number Computer' performed only complex multiplication and division, but later a simple modification enabled it to add and subtract as well. It used about 400-450 binary relays, 6-8 panels, and ten multiposition, multipole relays called "crossbars" for temporary storage of numbers."
- ↑ 361.0 361.1 361.2 361.3 361.4 "1953: Transistorized Computers Emerge". https://www.computerhistory.org/siliconengine/transistorized-computers-emerge/.
- ↑ 362.0 362.1 "ETL Mark III Transistor-Based Computer". Information Processing Society of Japan. http://museum.ipsj.or.jp/en/computer/dawn/0011.html.
- ↑ 363.0 363.1 "Brief History". Information Processing Society of Japan. http://museum.ipsj.or.jp/en/computer/main/history.html.
- ↑ "1962: Aerospace systems are first the applications for ICs in computers | The Silicon Engine | Computer History Museum". https://www.computerhistory.org/siliconengine/aerospace-systems-are-first-the-applications-for-ics-in-computers/.
- ↑ 365.0 365.1 "PDP-8 (Straight 8) Computer Functional Restoration". https://www.pdp8.net/straight8/functional_restore.shtml. "backplanes contain 230 cards, approximately 10,148 diodes, 1409 transistors, 5615 resistors, and 1674 capacitors"
- ↑ "IBM 608 calculator". January 23, 2003. https://www.ibm.com/ibm/history/exhibits/vintage/vintage_4506VV2214.html.
- ↑ "【NEC】 NEAC-2201". Information Processing Society of Japan. http://museum.ipsj.or.jp/en/computer/dawn/0018.html.
- ↑ "【Hitachi and Japanese National Railways】 MARS-1". Information Processing Society of Japan. http://museum.ipsj.or.jp/en/computer/dawn/0030.html.
- ↑ The IBM 7070 Data Processing System. Avery et al. (page 167)
- ↑ "【Matsushita Electric Industrial】 MADIC-I transistor-based computer". Information Processing Society of Japan. http://museum.ipsj.or.jp/en/computer/dawn/0066.html.
- ↑ "【NEC】 NEAC-2203". Information Processing Society of Japan. http://museum.ipsj.or.jp/en/computer/dawn/0025.html.
- ↑ "【Toshiba】 TOSBAC-2100". Information Processing Society of Japan. http://museum.ipsj.or.jp/en/computer/dawn/0022.html.
- ↑ 7090 Data Processing System
- ↑ Luigi Logrippo. "My first two computers: Elea 9003 and Elea 6001: Memories of a 'bare-metal' programmer".
- ↑ "【Mitsubishi Electric】 MELCOM 1101". Information Processing Society of Japan. http://museum.ipsj.or.jp/en/computer/dawn/0039.html.
- ↑ Erich Bloch (1959). "The Engineering Design of the Stretch Computer". Eastern Joint Computer Conference. http://www.bitsavers.org/pdf/ibm/7030/Bloch_EngrDesOfStretch_1959.pdf.
- ↑ "【NEC】NEAC-L2". Information Processing Society of Japan. http://museum.ipsj.or.jp/en/computer/main/0102.html.
- ↑ Thornton, James (1970). Design of a Computer: the Control Data 6600. p. 20.
- ↑ "Digital Equipment PDP-8/S".
- ↑ "The PDP-8/S - an exercise in cost reduction"
- ↑ "PDP-8/S"
- ↑ "The Digital Equipment Corporation PDP-8: Models and Options: The PDP-8/I".
- ↑ James F. O'Loughlin. "PDP-8/I: bigger on the inside yet smaller on the outside".
- ↑ Jan M. Rabaey, Digital Integrated Circuits, Fall 2001: Course Notes, Chapter 6: Designing Combinatorial Logic Gates in CMOS, retrieved October 27, 2012.
- ↑ Richard F. Tinder (January 2000). Engineering Digital Design. Academic Press. ISBN 978-0-12-691295-1. https://books.google.com/books?id=C9HlLsKgIi0C.
- ↑ 386.0 386.1 386.2 386.3 Engineers, Institute of Electrical Electronics (2000). 100-2000 (7th ed.). doi:10.1109/IEEESTD.2000.322230. IEEE Std 100-2000. ISBN 978-0-7381-2601-2. https://repositorio.unal.edu.co/handle/unal/79391.
- ↑ 387.0 387.1 387.2 Smith, Kevin (August 11, 1983). "Image processor handles 256 pixels simultaneously". Electronics.
- ↑ Kanellos, Michael (February 9, 2005). "Cell chip: Hit or hype?". CNET News. https://news.cnet.com/Cell-chip-Hit-or-hype/2010-1006_3-5568046.html.
- ↑ "Cerebras Unveils 2nd Gen Wafer Scale Engine: 850,000 Cores, 2.6 Trillion Transistors - ExtremeTech". https://www.extremetech.com/computing/322070-cerebras-unveils-2nd-gen-wafer-scale-engine-850000-cores-2-6-trillion-transistors.
- ↑ "Cerebras Wafer Scale Engine WSE-2 and CS-2 at Hot Chips 34". 2022-08-23. https://www.servethehome.com/cerebras-wafer-scale-engine-wse-2-and-cs-2-at-hot-chips-34/.
- ↑ "NVIDIA NVLink4 NVSwitch at Hot Chips 34". 2022-08-22. https://www.servethehome.com/nvidia-nvlink4-nvswitch-at-hot-chips-34/.
- ↑ 392.0 392.1 Schor, David (2019-04-06). "TSMC Starts 5-Nanometer Risk Production". https://fuse.wikichip.org/news/2207/tsmc-starts-5-nanometer-risk-production/.
- ↑ "1960: Metal Oxide Semiconductor (MOS) Transistor Demonstrated". https://www.computerhistory.org/siliconengine/metal-oxide-semiconductor-mos-transistor-demonstrated/.
- ↑ Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 321–3. ISBN 9783540342588.
- ↑ "1963: Complementary MOS Circuit Configuration is Invented". https://www.computerhistory.org/siliconengine/complementary-mos-circuit-configuration-is-invented/.
- ↑ "1964: First Commercial MOS IC Introduced". https://www.computerhistory.org/siliconengine/first-commercial-mos-ic-introduced/.
- ↑ 397.0 397.1 Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. p. 330. ISBN 9783540342588. https://books.google.com/books?id=2cu1Oh_COv8C&pg=PA330.
- ↑ Lambrechts, Wynand; Sinha, Saurabh; Abdallah, Jassem Ahmed; Prinsloo, Jaco (2018). Extending Moore's Law through Advanced Semiconductor Design and Processing Techniques. CRC Press. p. 59. ISBN 9781351248655. https://books.google.com/books?id=5m5uDwAAQBAJ&pg=PT59.
- ↑ Belzer, Jack; Holzman, Albert G.; Kent, Allen (1978). Encyclopedia of Computer Science and Technology: Volume 10 – Linear and Matrix Algebra to Microorganisms: Computer-Assisted Identification. CRC Press. p. 402. ISBN 9780824722609. https://books.google.com/books?id=iBsUXrgKBKkC&pg=PA402.
- ↑ "Intel Microprocessor Quick Reference Guide". https://www.intel.com/pressroom/kits/quickrefyr.htm.
- ↑ "1978: Double-well fast CMOS SRAM (Hitachi)". http://www.shmj.or.jp/english/pdf/ic/exhibi727E.pdf.
- ↑ "0.18-micron Technology". TSMC. https://www.tsmc.com/english/dedicatedFoundry/technology/0.18um.htm.
- ↑ 403.0 403.1 403.2 403.3 65nm CMOS Process Technology
- ↑ Diefendorff, Keith (15 November 1999). "Hal Makes Sparcs Fly". Microprocessor Report, Volume 13, Number 5.
- ↑ 405.0 405.1 Cutress, Ian. "Intel's 10nm Cannon Lake and Core i3-8121U Deep Dive Review". https://www.anandtech.com/show/13405/intel-10nm-cannon-lake-and-core-i3-8121u-deep-dive-review/3.
- ↑ "Samsung Shows Industry's First 2-Gigabit DDR2 SDRAM". Samsung Semiconductor (Samsung). 20 September 2004. https://www.samsung.com/semiconductor/insights/news-events/samsung-shows-industrys-first-2-gigabit-ddr2-sdram/.
- ↑ Williams, Martyn (12 July 2004). "Fujitsu, Toshiba begin 65nm chip trial production". InfoWorld. https://www.infoworld.com/article/2667082/fujitsu--toshiba-begin-65nm-chip-trial-production.html.
- ↑ Elpida's presentation at Via Technology Forum 2005 and Elpida 2005 Annual Report
- ↑ "Fujitsu Introduces World-class 65-Nanometer Process Technology for Advanced Server, Mobile Applications". http://www.fujitsu.com/us/news/pr/fma_20050920-1.html.
- ↑ 410.0 410.1 410.2 410.3 "Intel Now Packs 100 Million Transistors in Each Square Millimeter". March 30, 2017. https://spectrum.ieee.org/nanoclast/semiconductors/processors/intel-now-packs-100-million-transistors-in-each-square-millimeter.
- ↑ "40nm Technology". TSMC. https://www.tsmc.com/english/dedicatedFoundry/technology/40nm.htm.
- ↑ "Toshiba Makes Major Advances in NAND Flash Memory with 3-bit-per-cell 32nm generation and with 4-bit-per-cell 43nm technology". Toshiba. 11 February 2009. http://www.toshiba.co.jp/about/press/2009_02/pr1102.htm.
- ↑ 413.0 413.1 "History: 2010s". https://www.skhynix.com/eng/about/history2010.jsp.
- ↑ Shimpi, Anand Lal (June 8, 2012). "SandForce Demos 19nm Toshiba & 20nm IMFT NAND Flash". AnandTech. https://www.anandtech.com/show/5960/sandforce-demos-19nm-toshiba-20nm-imft-nand-flash.
- ↑ 415.0 415.1 Schor, David (2019-04-16). "TSMC Announces 6-Nanometer Process". https://fuse.wikichip.org/news/2261/tsmc-announces-6-nanometer-process/.
- ↑ "16/12nm Technology". TSMC. https://www.tsmc.com/english/dedicatedFoundry/technology/16nm.htm.
- ↑ 417.0 417.1 417.2 "VLSI 2018: Samsung's 8nm 8LPP, a 10nm extension". 2018-07-01. https://fuse.wikichip.org/news/1443/vlsi-2018-samsungs-8nm-8lpp-a-10nm-extension/.
- ↑ "Samsung Mass Producing 128Gb 3-bit MLC NAND Flash". Tom's Hardware. 11 April 2013. https://www.tomshardware.co.uk/NAND-128Gb-Mass-Production-3-bit-MLC,news-43458.html.
- ↑ "10nm Technology". TSMC. https://www.tsmc.com/english/dedicatedFoundry/technology/10nm.htm.
- ↑ 420.0 420.1 420.2 420.3 420.4 420.5 420.6 420.7 420.8 "Can TSMC maintain their process technology lead". 2020-04-29. https://semiwiki.com/semiconductor-manufacturers/intel/285192-can-tsmc-maintain-their-process-technology-lead/.
- ↑ 421.0 421.1 Jones, Scotten (May 3, 2019). "TSMC and Samsung 5nm Comparison". https://semiwiki.com/semiconductor-manufacturers/samsung-foundry/8157-tsmc-and-samsung-5nm-comparison/.
- ↑ 422.0 422.1 422.2 Nenni, Daniel (2019-01-02). "Samsung vs TSMC 7nm Update". https://semiwiki.com/semiconductor-manufacturers/samsung-foundry/7926-samsung-vs-tsmc-7nm-update/.
- ↑ "7nm Technology". TSMC. https://www.tsmc.com/english/dedicatedFoundry/technology/7nm.htm.
- ↑ Schor, David (2018-06-15). "A Look at Intel's 10nm Std Cell as TechInsights Reports on the i3-8121U, finds Ruthenium". https://fuse.wikichip.org/news/1371/a-look-at-intels-10nm-std-cell-as-techinsights-reports-on-the-i3-8121u-finds-ruthenium/.
- ↑ 425.0 425.1 "Samsung Foundry update 2019". 2019-08-06. https://semiwiki.com/semiconductor-manufacturers/samsung-foundry/259664-samsung-foundry-update-2019/.
- ↑ Jones, Scotten, 7nm, 5nm and 3nm Logic, current and projected processes, https://semiwiki.com/semiconductor/intel/7544-7nm-5nm-and-3nm-logic-current-and-projected-processes/
- ↑ Shilov, Anton. "Samsung Completes Development of 5nm EUV Process Technology". https://www.anandtech.com/show/14231/samsung-completes-development-of-5-nm-euv-process-technology.
- ↑ 428.0 428.1 428.2 428.3 "Samsung Foundry Innovations Power the Future of Big Data, AI/ML and Smart, Connected Devices". 2021-10-07. https://news.samsung.com/global/samsung-foundry-innovations-power-the-future-of-big-data-ai-ml-and-smart-connected-devices.
- ↑ "Qualcomm confirms Snapdragon 8 Gen 1 is made using Samsung's 4nm process". 2021-12-02. https://www.sammobile.com/news/qualcomm-snapdragon-8-gen-1-made-using-samsung-4nm-process/.
- ↑ "List of Snapdragon 8 Gen 1 smartphones available since December 2021". 2022-01-14. https://9to5google.com/2022/01/14/heres-every-smartphone-confirmed-to-use-the-qualcomm-snapdragon-8-gen-1-chip/.
- ↑ 431.0 431.1 "TSMC Extends Its 5nm Family With A New Enhanced-Performance N4P Node". 2021-10-26. https://fuse.wikichip.org/news/6439/tsmc-extends-its-5nm-family-with-a-new-enhanced-performance-n4p-node/.
- ↑ "MediaTek Launches Dimensity 9000 built on TSMC N4 process". 2021-12-16. https://corp.mediatek.com/news-events/press-releases/mediatek-officially-launches-dimensity-9000-flagship-chip-and-announces-adoption-by-global-device-makers.
- ↑ "TSMC Expands Advanced Technology Leadership with N4P Process (press release)". 2021-10-26. https://pr.tsmc.com/english/news/2874.
- ↑ Armasu, Lucian (11 January 2019), "Samsung Plans Mass Production of 3nm GAAFET Chips in 2021", www.tomshardware.com, https://www.tomshardware.com/news/samsung-3nm-gaafet-production-2021,38426.html
- ↑ "Samsung Starts 3nm Production: The Gate-All-Around (GAAFET) Era Begins". 2022-06-30. https://www.anandtech.com/print/17474/samsung-starts-3nm-production-the-gaafet-era-begins.
- ↑ "TSMC Plans New Fab for 3nm". EE Times. 12 December 2016. https://www.eetimes.com/document.asp?doc_id=1330971.
- ↑ 437.0 437.1 437.2 "TSMC Roadmap Update: 3nm in Q1 2023, 3nm Enhanced in 2024, 2nm in 2025" (in en-us). 2021-10-18. https://www.anandtech.com/show/17013/tsmc-update-3nm-in-q1-2023-3nm-enhanced-in-2024-2nm-in-2025.
- ↑ "TSMC Introduces N4X Process (press release)". 2021-12-16. https://pr.tsmc.com/english/news/2895.
- ↑ "The Future Is Now (blog post)". 2021-12-16. https://www.tsmc.com/english/news-events/blog-article-20211216.
- ↑ "TSMC Unveils N4X Node". 2021-12-17. https://www.anandtech.com/print/17123/tsmc-unveils-n4x-node-high-voltages-for-high-clocks.
- ↑ 441.0 441.1 "TSMC roadmap update". 2022-04-22. https://www.anandtech.com/print/17356/tsmc-roadmap-update-n3e-in-2024-n2-in-2026-major-changes-incoming.
- ↑ Smith, Ryan (2022-06-13). "Intel 4 Process Node In Detail: 2x Density Scaling, 20% Improved Performance". https://www.anandtech.com/print/17448/intel-4-process-node-in-detail-2x-density-scaling-20-improved-performance.
- ↑ Alcorn, Paul (24 March 2021). "Intel Fixes 7nm, Meteor Lake and Granite Rapids Coming in 2023". Tom's Hardware. https://www.tomshardware.com/news/intel-fixes-7nm-meteor-lake-and-granite-rapids-coming-in-2023.
- ↑ 444.0 444.1 444.2 444.3 Cutress, Dr Ian. "Intel's Process Roadmap to 2025: with 4nm, 3nm, 20A and 18A?!". https://www.anandtech.com/show/16823/intel-accelerated-offensive-process-roadmap-updates-to-10nm-7nm-4nm-3nm-20a-18a-packaging-foundry-emib-foveros.
- ↑ 445.0 445.1 445.2 Cutress, Dr Ian (2022-02-17). "Intel Discloses Multi-Generation Xeon Scalable Roadmap: New E-Core Only Xeons in 2024". https://www.anandtech.com/show/17259/intel-discloses-multigeneration-xeon-scalable-roadmap-new-ecore-only-xeons-in-2024.
- ↑ "Samsung Electronics Unveils Plans for 1.4nm Process Technology and Investment for Production Capacity at Samsung Foundry Forum 2022". 2022-10-04. https://news.samsung.com/global/samsung-electronics-unveils-plans-for-1-4nm-process-technology-and-investment-for-production-capacity-at-samsung-foundry-forum-2022.
External links
Original source: https://en.wikipedia.org/wiki/Transistor count.
Read more |