Biology:Earliest known life forms

From HandWiki
Revision as of 06:54, 12 February 2024 by StanislovAI (talk | contribs) (update)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Putative fossilized microorganisms found near hydrothermal vents
Evidence of possibly the oldest forms of life on Earth has been found in hydrothermal vent precipitates.[1]

The earliest known life forms on Earth may be as old as 4.1 billion years old (or Ga) according to biologically fractionated graphite inside a single zircon grain in the Jack Hills range of Australia.[2] The earliest evidence of life found in a stratigraphic unit, not just a single mineral grain, is the 3.7 Ga metasedimentary rocks containing graphite from the Isua Supracrustal Belt in Greenland.[3] The earliest direct known life on land may be stromatolites which have been found in 3.480-billion-year-old geyserite uncovered in the Dresser Formation of the Pilbara Craton of Western Australia.[4] Various microfossils of microorganisms have been found in 3.4 Ga rocks, including 3.465-billion-year-old Apex chert rocks from the same Australian craton region,[5] and in 3.42 Ga hydrothermal vent precipitates from Barberton, South Africa.[1] Much later in the geologic record, likely starting in 1.73 Ga, preserved molecular compounds of biologic origin are indicative of aerobic life.[6] Therefore, the earliest time for the origin of life on Earth is at least 3.5 billion years ago, possibly as early as 4.1 billion years ago — not long after the oceans formed 4.5 billion years ago and after the formation of the Earth 4.54 billion years ago.[7]

Biospheres

Earth is the only place in the universe known to harbor life where it exists in multiple environments.[8][9] The origin of life on Earth was at least 3.5 billion years ago, possibly as early as 3.8-4.1 billion years ago.[2][3][4] Since its emergence, life has persisted in several geological environments. The Earth's biosphere extends down to at least 10 km (6.2 mi) below the seafloor,[10][11] up to 41–77 km (25–48 mi)[12][13] into the atmosphere,[14][15][16] and includes soil, hydrothermal vents, and rock.[17][18] Further, the biosphere has been found to extend at least 914.4 m (3,000 ft; 0.5682 mi) below the ice of Antarctica[19][20] and includes the deepest parts of the ocean.[21][22][23][24] In July 2020, marine biologists reported that aerobic microorganisms (mainly) in "quasi-suspended animation" were found in organically-poor sediments 76.2 m (250 ft) below the seafloor in the South Pacific Gyre (SPG) ("the deadest spot in the ocean").[25] Microbes have been found in the Atacama Desert in Chile, one of the driest places on Earth,[26] and in deep-sea hydrothermal vent environments which can reach temperatures over 400°C.[27] Microbial communities can also survive in cold permafrost conditions down to -25°C.[28] Under certain test conditions, life forms have been observed to survive in the vacuum of outer space.[29][30] More recently, studies conducted on the International Space Station found that bacteria could survive in outer space.[31] In February 2023, findings of a "dark microbiome" of unfamiliar microorganisms in the Atacama Desert in Chile , a Mars-like region of planet Earth, were reported.[32]

Geochemical evidence

The age of Earth is about 4.54 billion years;[33][34][35] the earliest undisputed evidence of life on Earth dates from at least 3.5 billion years ago according to the stromatolite record.[36] Some computer models suggest life began as early as 4.5 billion years ago.[37][38] The oldest evidence of life is indirect in the form of isotopic fractionation. Microorganisms will preferentially use the lighter isotope of an atom to build biomass, as it takes less energy to break the bonds for metabolic processes.[39] Biologic material will often have a composition that is enriched in lighter isotopes compared to the surrounding rock it's found in. Carbon isotopes, expressed scientifically in parts per thousand difference from a standard as δ13C, are frequently used to detect carbon fixation by organisms and assess if purported early life evidence has biological origins. Typically, life will preferentially metabolize the isotopically light 12C isotope instead of the heavier 13C isotope. Biologic material can record this fractionation of carbon.

Zircons in metaconglomerates from the Jack Hills in Australia show carbon isotopic evidence for early life.

The oldest disputed geochemical evidence of life is isotopically light graphite inside a single zircon grain from the Jack Hills in Western Australia.[40][41] The graphite showed a δ13C signature consistent with biogenic carbon on Earth. Other early evidence of life is found in rocks both from the Akilia Sequence[42] and the Isua Supracrustal Belt (ISB) in Greenland.[43][44] These 3.7 Ga metasedimentary rocks also contain graphite or graphite inclusions with carbon isotope signatures that suggest biological fractionation.

The primary issue with isotopic evidence of life is that abiotic processes can fractionate isotopes and produce similar signatures to biotic processes.[45] Reassessment of the Akilia graphite show that metamorphism, Fischer-Tropsch mechanisms in hydrothermal environments, and volcanic processes may be responsible for enrichment lighter carbon isotopes.[46][47][48] The ISB rocks that contain the graphite may have experienced a change in composition from hot fluids, i.e. metasomatism, thus the graphite may have been formed by abiotic chemical reactions.[45] However, the ISB's graphite is generally more accepted as biologic in origin after further spectral analysis.[43][44]

Metasedimentary rocks from the 3.5 Ga Dresser Formation, which experienced less metamorphism than the sequences in Greenland, contain better preserved geochemical evidence.[49] Carbon isotopes as well as sulfur isotopes found in barite, which are fractionated by microbial metabolisms during sulfate reduction,[50] are consistent with biological processes.[51][52] However, the Dresser formation was deposited in an active volcanic and hydrothermal environment,[49] and abiotic processes could still be responsible for these fractionations.[53] Many of these findings are supplemented by direct evidence, typically by the presence of microfossils, however.

Fossil evidence

Fossils are direct evidence of life. In the search for the earliest life, fossils are often supplemented by geochemical evidence. The fossil record does not extend as far back as the geochemical record due to metamorphic processes that erase fossils from geologic units.

Stromatolites

Main page: Earth:Stromatolite

Stromatolites are laminated sedimentary structures created by photosynthetic organisms as they establish a microbial mat on a sediment surface. An important distinction for biogenicity is their convex-up structures and wavy laminations, which are typical of microbial communities who build preferentially toward the sun.[54] A disputed report of stromatolites is from the 3.7 Ga Isua metasediments that show convex-up, conical, and domical morphologies.[55][56][57] Further mineralogical analysis disagrees with the initial findings of internal convex-up laminae, a critical criteria for stromatolite identification, suggesting that the structures may be deformation features (i.e. boudins) caused by extensional tectonics in the Isua Supracrustal Belt.[58][59]

Stromatolite fossil showing convex-up structures.

The earliest direct evidence of life are stromatolites found in 3.48 billion-year-old chert in the Dresser formation of the Pilbara Craton in Western Australia.[4] Several features in these fossils are difficult to explain with abiotic processes, for example, the thickening of laminae over flexure crests that is expected from more sunlight.[60] Sulfur isotopes from barite veins in the stromatolites also favor a biologic origin.[61] However, while most scientists accept their biogenicity, abiotic explanations for these fossils cannot be fully discarded due to their hydrothermal depositional environment and debated geochemical evidence.[62]

Most archean stromatolites older than 3.0 Ga are found in Australia or South Africa. Stratiform stromatolites from the Pilbara Craton have been identified in the 3.47 Ga Mount Ada Basalt.[63] Barberton, South Africa hosts stratiform stromatolites in the 3.46 Hooggenoeg, 3.42 Kromberg and 3.33 Ga Mendon Formations of the Onverwacht Group.[64][65] The 3.43 Ga Strelley Pool Formation in Western Australia hosts stromatolites that demonstrate vertical and horizontal changes that may demonstrate microbial communities responding to transient environmental conditions.[66] Thus, it is likely anoxygenic or oxygenic photosynthesis has been occurring since at least 3.43 Ga Strelley Pool Formation.[67]

Microfossils

Claims of the earliest life using fossilized microorganisms (microfossils) are from hydrothermal vent precipitates from an ancient sea-bed in the Nuvvuagittuq Belt of Quebec, Canada. These may be as old as 4.28 billion years, which would make it the oldest evidence of life on Earth, suggesting "an almost instantaneous emergence of life" after ocean formation 4.41 billion years ago.[68][69] These findings may be better explained by abiotic processes: for example, silica-rich waters,[70] "chemical gardens,"[71] circulating hydrothermal fluids,[72] and volcanic ejecta[73] can produce morphologies similar to those presented in Nuvvuagittuq.

Archaea (prokaryotic microbes) were first found in extreme environments, such as hydrothermal vents.

The 3.48 Ga Dresser formation hosts microfossils of prokaryotic filaments in silica veins, the earliest fossil evidence of life on Earth,[74] but their origins may be volcanic.[75] 3.465-billion-year-old Australia Apex chert rocks may once have contained microorganisms,[76][77] although the validity of these findings has been contested.[78][79] "Putative filamentous microfossils," possibly of methanogens and/or methanotrophs that lived about 3.42-billion-year-old in "a paleo-subseafloor hydrothermal vein system of the Barberton greenstone belt, have been identified in South Africa ."[1] A diverse set of microfossil morphologies have been found in the 3.43 Ga Strelley Pool Formation including spheroid, lenticular, and film-like microstructures.[80] Their biogenicity are strengthened by their observed chemical preservation.[81] The early lithification of these structures allowed important chemical tracers, such as the carbon-to-nitrogen ratio, to be retained at levels higher than is typical in older, metamorphosed rock units.

Molecular Biomarkers

Biomarkers are compounds of biologic origin found in the geologic record that can be linked to past life.[82] Although they aren't preserved until the late Archean, they are important indicators of early photosynthetic life. Lipids are particularly useful biomarkers because they can survive for long periods of geologic time and reconstruct past environments.[83]

Lipids are commonly used in geologic studies to find evidence of oxygenic photosynthesis.

Fossilized lipids were reported from 2.7 Ga laminated shales from the Pilbara Craton[84] and the 2.67 Ga Kaapvaal Craton in South Africa.[85] However, the age of these biomarkers and whether their deposition was synchronous with their host rocks were debated,[86] and further work showed that the lipids were contaminants.[87] The oldest "clearly indigenous"[88] biomarkers are from the 1.64 Ga Barney Creek Formation in the McArthur Basin in Northern Australia,[89][90] but hydrocarbons from the 1.73 Ga Wollogorang Formation in the same basin have also been detected.[88]

Other indigenous biomarkers can be dated to the Mesoproterozoic era (1.6-1.0 Ga). The 1.4 Ga Hongshuizhuang Formation in the North China Craton contains hydrocarbons in shales that were likely sourced from prokaryotes.[91] Biomarkers were found in siltstones from the 1.38 Ga Roper Group of the McArthur Basin.[92] Hydrocarbons possibly derived from bacteria and algae were reported in 1.37 Ga Xiamaling Formation of the NCC.[93] The 1.1 Ga Atar/El Mreïti Group in the Taoudeni Basin, Mauritania show indigenous biomarkers in black shales.[94]

Genomic evidence

Main page: Biology:Last universal common ancestor

By comparing the genomes of modern organisms (in the domains Bacteria and Archaea), it is evident that there was a last universal common ancestor (LUCA). LUCA is not thought to be the first life on Earth, but rather the only type of organism of its time to still have living descendants. In 2016, M. C. Weiss and colleagues proposed a minimal set of genes that each occurred in at least two groups of Bacteria and two groups of Archaea. They argued that such a distribution of genes would be unlikely to arise by horizontal gene transfer, and so any such genes must have derived from the LUCA.[95] A molecular clock model suggests that the LUCA may have lived 4.477—4.519 billion years ago, within the Hadean eon.[37][38]

Further work on early life

Extraterrestrial origin for early life?

The theory of panspermia speculates that life on Earth may have come from biological matter carried by space dust[96] or meteorites.[97]

While current geochemical evidence dates the origin of life to possibly as early as 4.1 Ga, and fossil evidence shows life at 3.5 Ga, some researchers speculate that life may have started nearly 4.5 billion years ago.[37][38] According to biologist Stephen Blair Hedges, "If life arose relatively quickly on Earth ... then it could be common in the universe."[98][99][100] The possibility that terrestrial life forms may have been seeded from outer space has been considered.[101][102] In January 2018, a study found that 4.5 billion-year-old meteorites found on Earth contained liquid water along with prebiotic complex organic substances that may be ingredients for life.[103]

Early life on land

As for life on land, in 2019 scientists reported the discovery of a fossilized fungus, named Ourasphaira giraldae, in the Canadian Arctic, that may have grown on land a billion years ago, well before plants are thought to have been living on land.[104][105][106] The earliest life on land may have been bacteria 3.22 billion years ago.[107] Evidence of microbial life on land may have been found in 3.48 billion-year-old geyserite in the Pilbara Craton of Western Australia.[108][109]

Gallery

Earliest known life forms

See also


Notes

References

  1. 1.0 1.1 1.2 Cavalazzi, Barbara (14 July 2021). "Cellular remains in a ~3.42-billion-year-old subseafloor hydrothermal environment". Science Advances 7 (9): eabf3963. doi:10.1126/sciadv.abf3963. PMID 34261651. Bibcode2021SciA....7.3963C. 
  2. 2.0 2.1 Bell, Elizabeth; Boehnke, Patrick; Harrison, T. Mark; Mao, Wendy L. (24 November 2015). "Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon". Proceedings of the National Academy of Sciences of the United States of America 112 (47): 14518–14521. doi:10.1073/pnas.1517557112. PMID 26483481. Bibcode2015PNAS..11214518B. 
  3. 3.0 3.1 Ohtomo, Yoko; Kakegawa, Takeshi; Ishida, Akizumi et al. (January 2014). "Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks". Nature Geoscience 7 (1): 25–28. doi:10.1038/ngeo2025. ISSN 1752-0894. Bibcode2014NatGe...7...25O. 
  4. 4.0 4.1 4.2 Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M. (16 November 2013). "Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia". Astrobiology 13 (12): 1103–1124. doi:10.1089/ast.2013.1030. ISSN 1531-1074. PMID 24205812. Bibcode2013AsBio..13.1103N. 
  5. Schopf, J. William; Kitajima, Kouki; Spicuzza, Michael J.; Kudryavtsev, Anatolly B.; Valley, John W. (2017). "SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions". PNAS 115 (1): 53–58. doi:10.1073/pnas.1718063115. PMID 29255053. Bibcode2018PNAS..115...53S. 
  6. Hallmann, Christian; French, Katherine L.; Brocks, Jochen J. (2022-04-01). "Biomarkers in the Precambrian: Earth's Ancient Sedimentary Record of Life". Elements 18 (2): 93–99. doi:10.2138/gselements.18.2.93. ISSN 1811-5217. Bibcode2022Eleme..18...93H. http://dx.doi.org/10.2138/gselements.18.2.93. 
  7. "Age of the Earth". 9 July 2007. http://pubs.usgs.gov/gip/geotime/age.html. 
  8. Graham, Robert W. (February 1990). Extraterrestrial Life in the Universe. Lewis Research Center, Cleveland, Ohio. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19900013148.pdf. Retrieved 2 June 2015. 
  9. Altermann, Wladyslaw (2009). "From Fossils to Astrobiology – A Roadmap to Fata Morgana?". in Seckbach, Joseph; Walsh, Maud. From Fossils to Astrobiology: Records of Life on Earth and the Search for Extraterrestrial Biosignatures. Cellular Origin, Life in Extreme Habitats and Astrobiology. 12. Dordrecht, the Netherlands; London: Springer Science+Business Media. p. xvii. ISBN 978-1-4020-8836-0. 
  10. Klein, JoAnna (19 December 2018). "Deep Beneath Your Feet, They Live in the Octillions – The real journey to the center of the Earth has begun, and scientists are discovering subsurface microbial beings that shake up what we think we know about life.". The New York Times. https://www.nytimes.com/2018/12/19/science/subsurface-microbes.html. 
  11. Plümper, Oliver; King, Helen E.; Geisler, Thorsten; Liu, Yang; Pabst, Sonja; Savov, Ivan P.; Rost, Detlef; Zack, Thomas (2017-04-25). "Subduction zone forearc serpentinites as incubators for deep microbial life". Proceedings of the National Academy of Sciences 114 (17): 4324–4329. doi:10.1073/pnas.1612147114. ISSN 0027-8424. PMID 28396389. Bibcode2017PNAS..114.4324P. 
  12. Loeb, Abraham (4 November 2019). "Did Life from Earth Escape the Solar System Eons Ago?". Scientific American. https://blogs.scientificamerican.com/observations/did-life-from-earth-escape-the-solar-system-eons-ago/. 
  13. Smith, David J. (October 2013). "Microbes in the Upper Atmosphere and Unique Opportunities for Astrobiology Research". Astrobiology 13 (10): 981–990. doi:10.1089/ast.2013.1074. ISSN 1531-1074. PMID 24106911. Bibcode2013AsBio..13..981S. https://www.liebertpub.com/doi/10.1089/ast.2013.1074. 
  14. University of Georgia (25 August 1998). "First-Ever Scientific Estimate Of Total Bacteria On Earth Shows Far Greater Numbers Than Ever Known Before". Science Daily. https://www.sciencedaily.com/releases/1998/08/980825080732.htm. 
  15. Hadhazy, Adam (12 January 2015). "Life Might Thrive a Dozen Miles Beneath Earth's Surface". Astrobiology Magazine. http://www.astrobio.net/extreme-life/life-might-thrive-dozen-miles-beneath-earths-surface/. 
  16. Fox-Skelly, Jasmin (24 November 2015). "The Strange Beasts That Live In Solid Rock Deep Underground". BBC online. http://www.bbc.com/earth/story/20151124-meet-the-strange-creatures-that-live-in-solid-rock-deep-underground. 
  17. Suzuki, Yohey (2 April 2020). "Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust". Communications Biology 3 (136): 136. doi:10.1038/s42003-020-0860-1. PMID 32242062. 
  18. University of Tokyo (2 April 2020). "Discovery of life in solid rock deep beneath sea may inspire new search for life on Mars – Bacteria live in tiny clay-filled cracks in solid rock millions of years old". EurekAlert!. https://www.eurekalert.org/pub_releases/2020-04/uot-dol033020.php. 
  19. Griffiths, Huw J. (15 February 2021). "Breaking All the Rules: The First Recorded Hard Substrate Sessile Benthic Community Far Beneath an Antarctic Ice Shelf". Frontiers in Marine Science 8. doi:10.3389/fmars.2021.642040. 
  20. Fox, Douglas (20 August 2014). "Lakes under the ice: Antarctica's secret garden". Nature 512 (7514): 244–246. doi:10.1038/512244a. PMID 25143097. Bibcode2014Natur.512..244F. 
  21. Choi, Charles Q. (17 March 2013). "Microbes Thrive in Deepest Spot on Earth". http://www.livescience.com/27954-microbes-mariana-trench.html. 
  22. Glud, Ronnie; Wenzhöfer, Frank; Middelboe, Mathias; Oguri, Kazumasa; Turnewitsch, Robert; Canfield, Donald E.; Kitazato, Hiroshi (17 March 2013). "High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth". Nature Geoscience 6 (4): 284–288. doi:10.1038/ngeo1773. Bibcode2013NatGe...6..284G. 
  23. Oskin, Becky (14 March 2013). "Intraterrestrials: Life Thrives in Ocean Floor". http://www.livescience.com/27899-ocean-subsurface-ecosystem-found.html. 
  24. Morelle, Rebecca (15 December 2014). "Microbes discovered by deepest marine drill analysed". BBC News. https://www.bbc.com/news/science-environment-30489814. 
  25. Morono, Yuki (28 July 2020). "Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years". Nature Communications 11 (3626): 3626. doi:10.1038/s41467-020-17330-1. PMID 32724059. Bibcode2020NatCo..11.3626M. 
  26. Pennisi, Elizabeth (2018-02-26). "Microbes found in one of Earth's most hostile places, giving hope for life on Mars". Science. doi:10.1126/science.aat4341. ISSN 0036-8075. http://www.sciencemag.org/news/2018/02/microbes-found-one-earth-s-most-hostile-places-giving-hope-life-mars. 
  27. Georgieva, Magdalena N.; Little, Crispin T. S.; Maslennikov, Valeriy V.; Glover, Adrian G.; Ayupova, Nuriya R.; Herrington, Richard J. (2021-06-01). "The history of life at hydrothermal vents". Earth-Science Reviews 217: 103602. doi:10.1016/j.earscirev.2021.103602. ISSN 0012-8252. Bibcode2021ESRv..21703602G. https://www.sciencedirect.com/science/article/pii/S0012825221001021. 
  28. Mykytczuk, Nadia C S; Foote, Simon J; Omelon, Chris R; Southam, Gordon; Greer, Charles W; Whyte, Lyle G (2013-02-07). "Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1". The ISME Journal 7 (6): 1211–1226. doi:10.1038/ismej.2013.8. ISSN 1751-7362. PMID 23389107. PMC 3660685. Bibcode2013ISMEJ...7.1211M. http://dx.doi.org/10.1038/ismej.2013.8. 
  29. Dose, K.; Bieger-Dose, A.; Dillmann, R.; Gill, M.; Kerz, O.; Klein, A.; Meinert, H.; Nawroth, T. et al. (1995). "ERA-experiment "space biochemistry"". Advances in Space Research 16 (8): 119–129. doi:10.1016/0273-1177(95)00280-R. PMID 11542696. Bibcode1995AdSpR..16h.119D. 
  30. Horneck, G.; Eschweiler, U.; Reitz, G.; Wehner, J.; Willimek, R.; Strauch, K. (1995). "Biological responses to space: results of the experiment "Exobiological Unit" of ERA on EURECA I". Adv. Space Res. 16 (8): 105–118. doi:10.1016/0273-1177(95)00279-N. PMID 11542695. Bibcode1995AdSpR..16h.105H. 
  31. Kawaguchi, Yuko (26 August 2020). "DNA Damage and Survival Time Course of Deinococcal Cell Pellets During 3 Years of Exposure to Outer Space". Frontiers in Microbiology 11: 2050. doi:10.3389/fmicb.2020.02050. PMID 32983036. 
  32. Azua-Bustos, Armando (21 February 2023). "Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits". Nature Communications 14 (808): 808. doi:10.1038/s41467-023-36172-1. PMID 36810853. Bibcode2023NatCo..14..808A. 
  33. "Age of the Earth". 9 July 2007. http://pubs.usgs.gov/gip/geotime/age.html. 
  34. Dalrymple, G. Brent (2001). "The age of the Earth in the twentieth century: a problem (mostly) solved". Special Publications, Geological Society of London 190 (1): 205–221. doi:10.1144/GSL.SP.2001.190.01.14. Bibcode2001GSLSP.190..205D. 
  35. Manhesa, Gérard; Allègre, Claude J.; Dupréa, Bernard; Hamelin, Bruno (May 1980). "Lead isotope study of basic-ultrabasic layered complexes: Speculations about the age of the earth and primitive mantle characteristics". Earth and Planetary Science Letters 47 (3): 370–382. doi:10.1016/0012-821X(80)90024-2. ISSN 0012-821X. Bibcode1980E&PSL..47..370M. 
  36. Multiple Sources:
  37. 37.0 37.1 37.2 Staff (20 August 2018). "A timescale for the origin and evolution of all of life on Earth". Phys.org. https://phys.org/news/2018-08-timescale-evolution-life-earth.html. 
  38. 38.0 38.1 38.2 Betts, Holly C.; Putick, Mark N.; Clark, James W.; Williams, Tom A.; Donoghue, Philip C.J.; Pisani, Davide (20 August 2018). "Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin". Nature 2 (10): 1556–1562. doi:10.1038/s41559-018-0644-x. PMID 30127539. Bibcode2018NatEE...2.1556B. 
  39. Farquhar, G D; Ehleringer, J R; Hubick, K T (June 1989). "Carbon Isotope Discrimination and Photosynthesis" (in en). Annual Review of Plant Physiology and Plant Molecular Biology 40 (1): 503–537. doi:10.1146/annurev.pp.40.060189.002443. ISSN 1040-2519. https://www.annualreviews.org/doi/10.1146/annurev.pp.40.060189.002443. 
  40. Bell, Elizabeth; Boehnke, Patrick; Harrison, T. Mark; Mao, Wendy L. (24 November 2015). "Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon". Proceedings of the National Academy of Sciences of the United States of America 112 (47): 14518–14521. doi:10.1073/pnas.1517557112. PMID 26483481. Bibcode2015PNAS..11214518B. 
  41. Netburn, Deborah (2015-10-31). "Tiny zircons suggest life on Earth started earlier than we thought, UCLA researchers say" (in en-US). https://www.latimes.com/science/la-sci-oldest-rocks-20151031-story.html. 
  42. Mojzsis, S. J.; Arrhenius, G.; McKeegan, K. D.; Harrison, T. M.; Nutman, A. P.; Friend, C. R. L. (1996-11-07). "Evidence for life on Earth before 3,800 million years ago" (in en). Nature 384 (6604): 55–59. doi:10.1038/384055a0. ISSN 0028-0836. Bibcode1996Natur.384...55M. https://www.nature.com/articles/384055a0. 
  43. 43.0 43.1 Ohtomo, Yoko; Kakegawa, Takeshi; Ishida, Akizumi et al. (January 2014). "Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks". Nature Geoscience 7 (1): 25–28. doi:10.1038/ngeo2025. ISSN 1752-0894. Bibcode2014NatGe...7...25O. 
  44. 44.0 44.1 Hassenkam, T.; Rosing, M. T. (2017-11-02). "3.7 billion year old biogenic remains" (in en). Communicative & Integrative Biology 10 (5–6): e1380759. doi:10.1080/19420889.2017.1380759. ISSN 1942-0889. PMID 29260796. 
  45. 45.0 45.1 van Zuilen, Mark A.; Lepland, Aivo; Arrhenius, Gustaf (2002-08-08). "Reassessing the evidence for the earliest traces of life". Nature 418 (6898): 627–630. doi:10.1038/nature00934. ISSN 0028-0836. Bibcode2002Natur.418..627V. http://dx.doi.org/10.1038/nature00934. 
  46. Papineau, Dominic; De Gregorio, Bradley T.; Stroud, Rhonda M.; Steele, Andrew; Pecoits, Ernesto; Konhauser, Kurt; Wang, Jianhua; Fogel, Marilyn L. (October 2010). "Ancient graphite in the Eoarchean quartz-pyroxene rocks from Akilia in southern West Greenland II: Isotopic and chemical compositions and comparison with Paleoproterozoic banded iron formations". Geochimica et Cosmochimica Acta 74 (20): 5884–5905. doi:10.1016/j.gca.2010.07.002. ISSN 0016-7037. Bibcode2010GeCoA..74.5884P. http://dx.doi.org/10.1016/j.gca.2010.07.002. 
  47. MCCOLLOM, T; SEEWALD, J (2006-03-15). "Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions". Earth and Planetary Science Letters 243 (1–2): 74–84. doi:10.1016/j.epsl.2006.01.027. ISSN 0012-821X. Bibcode2006E&PSL.243...74M. http://dx.doi.org/10.1016/j.epsl.2006.01.027. 
  48. Lepland, Aivo; van Zuilen, Mark A.; Arrhenius, Gustaf; Whitehouse, Martin J.; Fedo, Christopher M. (2005). "Questioning the evidence for Earth's earliest life—Akilia revisited". Geology 33 (1): 77. doi:10.1130/g20890.1. ISSN 0091-7613. Bibcode2005Geo....33...77L. http://dx.doi.org/10.1130/g20890.1. 
  49. 49.0 49.1 Van Kranendonk, Martin J.; Djokic, Tara; Poole, Greg; Tadbiri, Sahand; Steller, Luke; Baumgartner, Raphael (2019), "Depositional Setting of the Fossiliferous, c.3480 Ma Dresser Formation, Pilbara Craton", Earth's Oldest Rocks (Elsevier): pp. 985–1006, doi:10.1016/b978-0-444-63901-1.00040-x, ISBN 9780444639011, http://dx.doi.org/10.1016/b978-0-444-63901-1.00040-x, retrieved 2023-11-16 
  50. Sim, Min Sub; Woo, Dong Kyun; Kim, Bokyung; Jeong, Hyeonjeong; Joo, Young Ji; Hong, Yeon Woo; Choi, Jy Young (2023-03-15). "What Controls the Sulfur Isotope Fractionation during Dissimilatory Sulfate Reduction?" (in en). ACS Environmental Au 3 (2): 76–86. doi:10.1021/acsenvironau.2c00059. ISSN 2694-2518. PMID 37102088. 
  51. Ueno, Yuichiro; Yamada, Keita; Yoshida, Naohiro; Maruyama, Shigenori; Isozaki, Yukio (March 2006). "Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era". Nature 440 (7083): 516–519. doi:10.1038/nature04584. ISSN 0028-0836. PMID 16554816. Bibcode2006Natur.440..516U. http://dx.doi.org/10.1038/nature04584. 
  52. Wacey, David; Noffke, Nora; Cliff, John; Barley, Mark E.; Farquhar, James (September 2015). "Micro-scale quadruple sulfur isotope analysis of pyrite from the ∼3480Ma Dresser Formation: New insights into sulfur cycling on the early Earth". Precambrian Research 258: 24–35. doi:10.1016/j.precamres.2014.12.012. ISSN 0301-9268. Bibcode2015PreR..258...24W. http://dx.doi.org/10.1016/j.precamres.2014.12.012. 
  53. Lollar, Barbara Sherwood; McCollom, Thomas M. (December 2006). "Biosignatures and abiotic constraints on early life". Nature 444 (7121): E18; discussion E18-9. doi:10.1038/nature05499. ISSN 0028-0836. PMID 17167427. http://dx.doi.org/10.1038/nature05499. 
  54. Buick, Roger; Dunlop, J.S.R.; Groves, D.I. (January 1981). "Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia". Alcheringa: An Australasian Journal of Palaeontology 5 (3): 161–181. doi:10.1080/03115518108566999. ISSN 0311-5518. Bibcode1981Alch....5..161B. http://dx.doi.org/10.1080/03115518108566999. 
  55. Nutman, Allen P.; Bennett, Vickie C.; Friend, Clark R. L.; Van Kranendonk, Martin J.; Chivas, Allan R. (2016-08-31). "Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures". Nature 537 (7621): 535–538. doi:10.1038/nature19355. ISSN 0028-0836. PMID 27580034. Bibcode2016Natur.537..535N. http://dx.doi.org/10.1038/nature19355. 
  56. Wade, Nicholas (31 August 2016). "World's Oldest Fossils Found in Greenland". The New York Times. https://www.nytimes.com/2016/09/01/science/oldest-fossils-on-earth.html. 
  57. 57.0 57.1 Allwood, Abigail C. (22 September 2016). "Evidence of life in Earth's oldest rocks". Nature 537 (7621): 500–5021. doi:10.1038/nature19429. PMID 27580031. 
  58. Zawaski, Mike J.; Kelly, Nigel M.; Orlandini, Omero Felipe; Nichols, Claire I. O.; Allwood, Abigail C.; Mojzsis, Stephen J. (2020-09-01). "Reappraisal of purported ca. 3.7 Ga stromatolites from the Isua Supracrustal Belt (West Greenland) from detailed chemical and structural analysis". Earth and Planetary Science Letters 545: 116409. doi:10.1016/j.epsl.2020.116409. ISSN 0012-821X. Bibcode2020E&PSL.54516409Z. https://www.sciencedirect.com/science/article/pii/S0012821X20303538. 
  59. 59.0 59.1 Wei-Haas, Maya (17 October 2018). "'World's oldest fossils' may just be pretty rocks – Analysis of 3.7-billion-year-old outcrops has reignited controversy over when life on Earth began.". National Geographic. https://www.nationalgeographic.com/science/2018/10/news-oldest-stromatolite-fossilized-life-rocks-greenland/. 
  60. Walter, M. R.; Buick, R.; Dunlop, J. S. R. (April 1980). "Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia". Nature 284 (5755): 443–445. doi:10.1038/284443a0. Bibcode1980Natur.284..443W. http://dx.doi.org/10.1038/284443a0. 
  61. Philippot, Pascal; Van Zuilen, Mark; Lepot, Kevin; Thomazo, Christophe; Farquhar, James; Van Kranendonk, Martin J. (2007-09-14). "Early Archaean Microorganisms Preferred Elemental Sulfur, Not Sulfate". Science 317 (5844): 1534–1537. doi:10.1126/science.1145861. PMID 17872441. Bibcode2007Sci...317.1534P. http://dx.doi.org/10.1126/science.1145861. 
  62. Lollar, Barbara Sherwood; McCollom, Thomas M. (December 2006). "Biosignatures and abiotic constraints on early life". Nature 444 (7121): E18; discussion E18-9. doi:10.1038/nature05499. PMID 17167427. http://dx.doi.org/10.1038/nature05499. 
  63. Awramik, S.M.; Schopf, J.W.; Walter, M.R. (June 1983). "Filamentous fossil bacteria from the Archean of Western Australia" (in en). Precambrian Research 20 (2–4): 357–374. doi:10.1016/0301-9268(83)90081-5. Bibcode1983PreR...20..357A. https://linkinghub.elsevier.com/retrieve/pii/0301926883900815. 
  64. Hickman-Lewis, Keyron; Westall, Frances; Cavalazzi, Barbara (2019), "Traces of Early Life From the Barberton Greenstone Belt, South Africa", Earth's Oldest Rocks (Elsevier): pp. 1029–1058, doi:10.1016/b978-0-444-63901-1.00042-3, ISBN 9780444639011, http://dx.doi.org/10.1016/b978-0-444-63901-1.00042-3, retrieved 2023-11-21 
  65. Hofmann, H. J. (2000), Riding, Robert E.; Awramik, Stanley M., eds., "Archean Stromatolites as Microbial Archives" (in en), Microbial Sediments (Berlin, Heidelberg: Springer): pp. 315–327, doi:10.1007/978-3-662-04036-2_34, ISBN 978-3-662-04036-2, https://doi.org/10.1007/978-3-662-04036-2_34, retrieved 2023-11-22 
  66. Allwood, Abigail C.; Grotzinger, John P.; Knoll, Andrew H.; Burch, Ian W.; Anderson, Mark S.; Coleman, Max L.; Kanik, Isik (2009-06-16). "Controls on development and diversity of Early Archean stromatolites". Proceedings of the National Academy of Sciences 106 (24): 9548–9555. doi:10.1073/pnas.0903323106. PMID 19515817. 
  67. Duda, Jan-Peter; Kranendonk, Martin J. Van; Thiel, Volker; Ionescu, Danny; Strauss, Harald; Schäfer, Nadine; Reitner, Joachim (2016-01-25). "A Rare Glimpse of Paleoarchean Life: Geobiology of an Exceptionally Preserved Microbial Mat Facies from the 3.4 Ga Strelley Pool Formation, Western Australia" (in en). PLOS ONE 11 (1): e0147629. doi:10.1371/journal.pone.0147629. ISSN 1932-6203. PMID 26807732. Bibcode2016PLoSO..1147629D. 
  68. Dodd, Matthew S.; Papineau, Dominic; Grenne, Tor; slack, John F.; Rittner, Martin; Pirajno, Franco; O'Neil, Jonathan; Little, Crispin T. S. (2 March 2017). "Evidence for early life in Earth's oldest hydrothermal vent precipitates". Nature 543 (7643): 60–64. doi:10.1038/nature21377. PMID 28252057. Bibcode2017Natur.543...60D. http://eprints.whiterose.ac.uk/112179/1/ppnature21377_Dodd_for%20Symplectic.pdf. 
  69. "Earliest evidence of life on Earth 'found'" (in en-GB). BBC News. 2017-03-01. https://www.bbc.com/news/science-environment-39117523. 
  70. García-Ruiz, Juan Manuel; Nakouzi, Elias; Kotopoulou, Electra; Tamborrino, Leonardo; Steinbock, Oliver (2017-03-03). "Biomimetic mineral self-organization from silica-rich spring waters" (in en). Science Advances 3 (3): e1602285. doi:10.1126/sciadv.1602285. ISSN 2375-2548. PMID 28345049. Bibcode2017SciA....3E2285G. 
  71. McMahon, Sean (2019-12-04). "Earth's earliest and deepest purported fossils may be iron-mineralized chemical gardens" (in en). Proceedings of the Royal Society B: Biological Sciences 286 (1916): 20192410. doi:10.1098/rspb.2019.2410. ISSN 0962-8452. PMID 31771469. 
  72. Johannessen, Karen C.; McLoughlin, Nicola; Vullum, Per Erik; Thorseth, Ingunn H. (January 2020). "On the biogenicity of Fe-oxyhydroxide filaments in silicified low-temperature hydrothermal deposits: Implications for the identification of Fe-oxidizing bacteria in the rock record" (in en). Geobiology 18 (1): 31–53. doi:10.1111/gbi.12363. ISSN 1472-4677. PMID 31532578. https://onlinelibrary.wiley.com/doi/10.1111/gbi.12363. 
  73. Wacey, David; Saunders, Martin; Kong, Charlie (April 2018). "Remarkably preserved tephra from the 3430 Ma Strelley Pool Formation, Western Australia: Implications for the interpretation of Precambrian microfossils". Earth and Planetary Science Letters 487: 33–43. doi:10.1016/j.epsl.2018.01.021. Bibcode2018E&PSL.487...33W. http://dx.doi.org/10.1016/j.epsl.2018.01.021. 
  74. Ueno, Yuichiro; Isozaki, Yukio; Yurimoto, Hisayoshi; Maruyama, Shigenori (March 2001). "Carbon Isotopic Signatures of Individual Archean Microfossils(?) from Western Australia" (in en). International Geology Review 43 (3): 196–212. doi:10.1080/00206810109465008. ISSN 0020-6814. Bibcode2001IGRv...43..196U. https://www.tandfonline.com/doi/full/10.1080/00206810109465008. 
  75. Wacey, David; Noffke, Nora; Saunders, Martin; Guagliardo, Paul; Pyle, David M. (May 2018). "Volcanogenic Pseudo-Fossils from the ∼3.48 Ga Dresser Formation, Pilbara, Western Australia". Astrobiology 18 (5): 539–555. doi:10.1089/ast.2017.1734. ISSN 1531-1074. PMID 29461869. Bibcode2018AsBio..18..539W. 
  76. Tyrell, Kelly April (18 December 2017). "Oldest fossils ever found show life on Earth began before 3.5 billion years ago". https://news.wisc.edu/oldest-fossils-ever-found-show-life-on-earth-began-before-3-5-billion-years-ago/. 
  77. Schopf, J. William; Kitajima, Kouki; Spicuzza, Michael J.; Kudryavtsev, Anatolly B.; Valley, John W. (2017). "SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions". PNAS 115 (1): 53–58. doi:10.1073/pnas.1718063115. PMID 29255053. Bibcode2018PNAS..115...53S. 
  78. Brasier, Martin D.; Green, Owen R.; Lindsay, John F.; McLoughlin, Nicola; Steele, Andrew; Stoakes, Cris (2005-10-21). "Critical testing of Earth's oldest putative fossil assemblage from the ~3.5Ga Apex chert, Chinaman Creek, Western Australia". Precambrian Research 140 (1): 55–102. doi:10.1016/j.precamres.2005.06.008. ISSN 0301-9268. Bibcode2005PreR..140...55B. https://www.sciencedirect.com/science/article/pii/S0301926805000926. 
  79. Pinti, Daniele L.; Mineau, Raymond; Clement, Valentin (2009-08-02). "Hydrothermal alteration and microfossil artefacts of the 3,465-million-year-old Apex chert". Nature Geoscience 2 (9): 640–643. doi:10.1038/ngeo601. ISSN 1752-0894. Bibcode2009NatGe...2..640P. http://dx.doi.org/10.1038/ngeo601. 
  80. Sugitani, K.; Mimura, K.; Takeuchi, M.; Lepot, K.; Ito, S.; Javaux, E. J. (November 2015). "Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils" (in en). Geobiology 13 (6): 507–521. doi:10.1111/gbi.12148. ISSN 1472-4677. PMID 26073280. https://onlinelibrary.wiley.com/doi/10.1111/gbi.12148. 
  81. Alleon, J.; Bernard, S.; Le Guillou, C.; Beyssac, O.; Sugitani, K.; Robert, F. (August 2018). "Chemical nature of the 3.4 Ga Strelley Pool microfossils". Geochemical Perspectives Letters: 37–42. doi:10.7185/geochemlet.1817. http://www.geochemicalperspectivesletters.org/article1817. 
  82. Condie, Kent C. (2022-01-01), Condie, Kent C., ed., "Chapter 9 - The biosphere", Earth as an Evolving Planetary System (Fourth Edition) (Academic Press): pp. 269–303, doi:10.1016/b978-0-12-819914-5.00003-2, ISBN 978-0-12-819914-5, https://www.sciencedirect.com/science/article/pii/B9780128199145000032, retrieved 2023-11-28 
  83. Finkel, Pablo L.; Carrizo, Daniel; Parro, Victor; Sánchez-García, Laura (May 2023). "An Overview of Lipid Biomarkers in Terrestrial Extreme Environments with Relevance for Mars Exploration". Astrobiology 23 (5): 563–604. doi:10.1089/ast.2022.0083. ISSN 1531-1074. PMID 36880883. Bibcode2023AsBio..23..563F. 
  84. Brocks, Jochen J.; Logan, Graham A.; Buick, Roger; Summons, Roger E. (1999-08-13). "Archean Molecular Fossils and the Early Rise of Eukaryotes" (in en). Science 285 (5430): 1033–1036. doi:10.1126/science.285.5430.1033. ISSN 0036-8075. PMID 10446042. Bibcode1999Sci...285.1033B. https://www.science.org/doi/10.1126/science.285.5430.1033. 
  85. Waldbauer, Jacob R.; Sherman, Laura S.; Sumner, Dawn Y.; Summons, Roger E. (2009-03-01). "Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis". Precambrian Research. Initial investigations of a Neoarchean shelf margin–basin transition (Transvaal Supergroup, South Africa) 169 (1): 28–47. doi:10.1016/j.precamres.2008.10.011. ISSN 0301-9268. Bibcode2009PreR..169...28W. https://www.sciencedirect.com/science/article/pii/S0301926808002507. 
  86. Rasmussen, Birger; Fletcher, Ian R.; Brocks, Jochen J.; Kilburn, Matt R. (October 2008). "Reassessing the first appearance of eukaryotes and cyanobacteria" (in en). Nature 455 (7216): 1101–1104. doi:10.1038/nature07381. ISSN 1476-4687. PMID 18948954. Bibcode2008Natur.455.1101R. https://www.nature.com/articles/nature07381. 
  87. French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex et al. (2015-04-27). "Reappraisal of hydrocarbon biomarkers in Archean rocks". Proceedings of the National Academy of Sciences 112 (19): 5915–5920. doi:10.1073/pnas.1419563112. ISSN 0027-8424. PMID 25918387. Bibcode2015PNAS..112.5915F. 
  88. 88.0 88.1 Vinnichenko, Galina; Jarrett, Amber J. M.; Hope, Janet M.; Brocks, Jochen J. (September 2020). "Discovery of the oldest known biomarkers provides evidence for phototrophic bacteria in the 1.73 Ga Wollogorang Formation, Australia". Geobiology 18 (5): 544–559. doi:10.1111/gbi.12390. ISSN 1472-4677. Bibcode2020Gbio...18..544V. https://onlinelibrary.wiley.com/doi/10.1111/gbi.12390. 
  89. Summons, Roger E; Powell, Trevor G; Boreham, Christopher J (1988-07-01). "Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: III. Composition of extractable hydrocarbons". Geochimica et Cosmochimica Acta 52 (7): 1747–1763. doi:10.1016/0016-7037(88)90001-4. ISSN 0016-7037. Bibcode1988GeCoA..52.1747S. https://dx.doi.org/10.1016/0016-7037%2888%2990001-4. 
  90. Brocks, Jochen J.; Love, Gordon D.; Summons, Roger E.; Knoll, Andrew H.; Logan, Graham A.; Bowden, Stephen A. (October 2005). "Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea" (in en). Nature 437 (7060): 866–870. doi:10.1038/nature04068. ISSN 1476-4687. PMID 16208367. Bibcode2005Natur.437..866B. https://www.nature.com/articles/nature04068. 
  91. Luo, Qingyong; George, Simon C.; Xu, Yaohui; Zhong, Ningning (2016-09-01). "Organic geochemical characteristics of the Mesoproterozoic Hongshuizhuang Formation from northern China: Implications for thermal maturity and biological sources". Organic Geochemistry 99: 23–37. doi:10.1016/j.orggeochem.2016.05.004. Bibcode2016OrGeo..99...23L. https://www.sciencedirect.com/science/article/pii/S0146638016300420. 
  92. Jarrett, Amber J. M.; Cox, Grant M.; Brocks, Jochen J.; Grosjean, Emmanuelle; Boreham, Chris J.; Edwards, Dianne S. (July 2019). "Microbial assemblage and palaeoenvironmental reconstruction of the 1.38 Ga Velkerri Formation, McArthur Basin, northern Australia". Geobiology 17 (4): 360–380. doi:10.1111/gbi.12331. PMID 30734481. Bibcode2019Gbio...17..360J. 
  93. Luo, Genming; Hallmann, Christian; Xie, Shucheng; Ruan, Xiaoyan; Summons, Roger E. (2015-02-15). "Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation". Geochimica et Cosmochimica Acta 151: 150–167. doi:10.1016/j.gca.2014.12.022. Bibcode2015GeCoA.151..150L. https://www.sciencedirect.com/science/article/pii/S0016703714007431. 
  94. Blumenberg, Martin; Thiel, Volker; Riegel, Walter; Kah, Linda C.; Reitner, Joachim (2012-02-01). "Biomarkers of black shales formed by microbial mats, Late Mesoproterozoic (1.1Ga) Taoudeni Basin, Mauritania". Precambrian Research 196-197: 113–127. doi:10.1016/j.precamres.2011.11.010. Bibcode2012PreR..196..113B. https://www.sciencedirect.com/science/article/pii/S0301926811002506. 
  95. Weiss, M. C.; Sousa, F. L.; Mrnjavac, N.; Neukirchen, S.; Roettger, M.; Nelson-Sathi, S.; Martin, W. F. (2016). "The physiology and habitat of the last universal common ancestor". Nature Microbiology 1 (9): 16116. doi:10.1038/nmicrobiol.2016.116. PMID 27562259. 
  96. Berera, Arjun (6 November 2017). "Space dust collisions as a planetary escape mechanism". Astrobiology 17 (12): 1274–1282. doi:10.1089/ast.2017.1662. PMID 29148823. Bibcode2017AsBio..17.1274B. 
  97. Chan, Queenie H. S. (10 January 2018). "Organic matter in extraterrestrial water-bearing salt crystals". Science Advances 4 (1, eaao3521): eaao3521. doi:10.1126/sciadv.aao3521. PMID 29349297. Bibcode2018SciA....4.3521C. 
  98. Borenstein, Seth (19 October 2015). "Hints of life on what was thought to be desolate early Earth". Associated Press. https://apnews.com/e6be2537b4cd46ffb9c0585bae2b2e51. 
  99. Schouten, Lucy (20 October 2015). "When did life first emerge on Earth? Maybe a lot earlier than we thought". The Christian Science Monitor (Boston, Massachusetts: Christian Science Publishing Society). ISSN 0882-7729. https://www.csmonitor.com/Science/2015/1020/When-did-life-first-emerge-on-Earth-Maybe-a-lot-earlier-than-we-thought. 
  100. Johnston, Ian (2 October 2017). "Life first emerged in 'warm little ponds' almost as old as the Earth itself – Charles Darwin's famous idea backed by new scientific study". The Independent. https://www.independent.co.uk/news/science/origins-life-ponds-organisms-earth-age-study-a7978906.html. 
  101. Steele, Edward J. (1 August 2018). "Cause of Cambrian Explosion – Terrestrial or Cosmic?". Progress in Biophysics and Molecular Biology 136: 3–23. doi:10.1016/j.pbiomolbio.2018.03.004. PMID 29544820. 
  102. McRae, Mike (28 December 2021). "A Weird Paper Tests The Limits of Science by Claiming Octopuses Came From Space". ScienceAlert. https://www.sciencealert.com/a-weird-paper-tests-the-limits-of-science-by-claiming-octopuses-came-from-space. 
  103. Chan, Queenie H. S. (10 January 2018). "Organic matter in extraterrestrial water-bearing salt crystals". Science Advances 4 (1, eaao3521): eaao3521. doi:10.1126/sciadv.aao3521. PMID 29349297. Bibcode2018SciA....4.3521C. 
  104. Zimmer, Carl (22 May 2019). "How Did Life Arrive on Land? A Billion-Year-Old Fungus May Hold Clues – A cache of microscopic fossils from the Arctic hints that fungi reached land long before plants.". The New York Times. https://www.nytimes.com/2019/05/22/science/fungi-fossils-plants.html. 
  105. Loron, Corentin C.; François, Camille; Rainbird, Robert H.; Turner, Elizabeth C.; Borensztajn, Stephan; Javaux, Emmanuelle J. (22 May 2019). "Early fungi from the Proterozoic era in Arctic Canada". Nature (Springer Science and Business Media LLC) 570 (7760): 232–235. doi:10.1038/s41586-019-1217-0. ISSN 0028-0836. PMID 31118507. Bibcode2019Natur.570..232L. 
  106. Timmer, John (22 May 2019). "Billion-year-old fossils may be early fungus". https://arstechnica.com/science/2019/05/billion-year-old-fossils-may-be-early-fungus/. 
  107. Homann, Martin (23 July 2018). "Microbial life and biogeochemical cycling on land 3,220 million years ago". Nature Geoscience 11 (9): 665–671. doi:10.1038/s41561-018-0190-9. Bibcode2018NatGe..11..665H. https://hal.univ-brest.fr/hal-01901955/file/Homann%20et%20al.%202018%20-%20accepted-1.pdf. 
  108. "Oldest evidence of life on land found in 3.48-billion-year-old Australian rocks". Phys.org. 9 May 2017. https://phys.org/news/2017-05-oldest-evidence-life-billion-year-old-australian.html. 
  109. University of New South Wales (26 September 2019). "Earliest signs of life: Scientists find microbial remains in ancient rocks". EurekAlert!. https://www.eurekalert.org/pub_releases/2019-09/uons-eso092519.php. 
  110. Porada H.; Ghergut J.; Bouougri El H. (2008). "Kinneyia-Type Wrinkle Structures – Critical Review And Model Of Formation.". PALAIOS 23 (2): 65–77. doi:10.2110/palo.2006.p06-095r. Bibcode2008Palai..23...65P. 

External links