Chemistry:Homotaurine

From HandWiki
Homotaurine[1]
Skeletal formula
Ball-and-stick model
Names
Preferred IUPAC name
3-Aminopropane-1-sulfonic acid
Other names
Tramiprosate; Alzhemed; 3-APS
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
EC Number
  • 222-977-4
KEGG
UNII
Properties
C3H9NO3S
Molar mass 139.17 g·mol−1
Melting point 293 °C (559 °F; 566 K) (decomposition)
Hazards
GHS pictograms GHS07: Harmful
GHS Signal word Warning
H315, H319, H335
P261, P264, P271, P280, P302+352, P304+340, P305+351+338, P312, P321, P332+313, P337+313, P362, P403+233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Homotaurine (also known as tramiprosate (INN), 3-amino-1-propanesulfonic acid, or 3-APS) is a natural sulfonic acid found in seaweed.[3] It is analogous to taurine, but with an extra carbon in its chain. It has GABAergic activity, apparently by mimicking GABA, which it resembles.[4]

Homotaurine was investigated in a Phase III clinical trial as a potential treatment for Alzheimer's disease (AD) that did not show efficacy. However, post-hoc analyses have shown positive and significant effects of homotaurine on secondary endpoints and subgroups of patients, including a reduction in hippocampal volume loss and lower decline in memory function in the overall cohort, as well as a reduction in global cognitive decline in APOE4 allele carriers, suggesting a disease-modifying effect.[5] A study in cognitive impairment done in 2018 did show positive benefits.[6]

Homotaurine is currently in a phase 3 study with expected FDA approval as the first disease modifying drug for AD.[7][8]

Medical use

Acamprosate (N-acetyl homotaurine) was approved by the FDA in 2004 to treat alcohol dependence.[4]

Biochemical properties

In preclinical studies it had been found to bind to soluble amyloid beta and inhibit the formation of neurotoxic aggregates.[5][9] Homotaurine has also shown anticonvulsant activities, reduction in skeletal muscle tonus, and hypothermic activity.[10]

Homotaurine has been reported as a GABA antagonist,[4] as well as a GABA agonist.[10][11] In vitro studies have found that homotaurine is a GABAA partial agonist[12] as well as a GABAB receptor partial agonist with low efficacy, becoming an antagonist and displacing the full agonists GABA and baclofen at this receptor.[13] In a study in rats, homotaurine reversed the catatonia induced by baclofen (the prototypical GABAB agonist),[14] and was able to produce analgesia via the GABAB receptor, an effect that was abolished when CGP-35348, a GABAB receptor antagonist was applied.[15][16]

In a human study homotaurine selectively and fully inhibits the formation of Aβ42 oligomers at the clinical dose, without evidence of vasogenic edema.[7]

One study in rats showed that homotaurine suppressed ethanol-stimulated dopamine release, as well as ethanol intake and preference in rats in a way similar to the N-acetyl derivative of homotaurine, acamprosate.[17]

References

  1. "Homotaurine". Sigma-Aldrich. http://www.sigmaaldrich.com/catalog/search/ProductDetail/ALDRICH/A76109. 
  2. "Tramiprosate" (in en). https://pubchem.ncbi.nlm.nih.gov/compound/1646#section=Safety-and-Hazards. 
  3. Martorana, Alessandro; Di Lorenzo, Francesco; Manenti, Guglielmo; Semprini, Roberta; Koch, Giacomo (23 September 2014). "Homotaurine Induces Measurable Changes of Short Latency Afferent Inhibition in a Group of Mild Cognitive Impairment Individuals". Frontiers in Aging Neuroscience 6: 254. doi:10.3389/fnagi.2014.00254. PMID 25295005. 
  4. 4.0 4.1 4.2 Lednicer, Daniel (2008). The Organic Chemistry of Drug Synthesis (7th ed.). Hoboken: John Wiley & Sons. p. 15. ISBN 978-0-470-18066-2. https://books.google.com/books?id=N6OAhuiHqiIC&pg=PA15. 
  5. 5.0 5.1 Caltagirone, C; Ferrannini, L; Marchionni, N; Nappi, G; Scapagnini, G; Trabucchi, M (December 2012). "The potential protective effect of tramiprosate (homotaurine) against Alzheimer's disease: a review". Aging Clinical and Experimental Research 24 (6): 580–587. doi:10.3275/8585. PMID 22961121. 
  6. Martorana, A.; Motta, C; Koch, G.; Massaia, M.; Mondino, S.; Raniero, I.; Vacca, A.; Di Lorenzo, F. et al. (15 March 2018). "Effect of homotaurine in patients with cognitive impairment: results from an Italian observational retrospective study". Journal of Gerontology and Geriatrics 66: 15–20. http://www.jgerontology-geriatrics.com/article/view/97. 
  7. 7.0 7.1 Tolar, Martin; Abushakra, Susan; Hey, John A.; Porsteinsson, Anton; Sabbagh, Marwan (December 2020). "Aducanumab, gantenerumab, BAN2401, and ALZ-801—the first wave of amyloid-targeting drugs for Alzheimer's disease with potential for near term approval". Alzheimer's Research & Therapy 12 (1): 95. doi:10.1186/s13195-020-00663-w. PMID 32787971. 
  8. Abushakra, S.; Porsteinsson, A.; Scheltens, P.; Sadowsky, C.; Vellas, B.; Cummings, J.; Gauthier, S.; Hey, J. A. et al. (1 September 2017). "Clinical effects of tramiprosate in apoe4/4 homozygous patients with mild alzheimer's disease suggest disease modification potential". Journal of Prevention of Alzheimer's Disease 4 (3): 149–156. doi:10.14283/jpad.2017.26. PMID 29182706. 
  9. Aisen, Paul; Gauthier, Serge; Vellas, Bruno; Briand, Richard; Saumier, Daniel; Laurin, Julie; Garceau, Denis (1 September 2007). "Alzhemed: A Potential Treatment for Alzheimers Disease". Current Alzheimer Research 4 (4): 473–478. doi:10.2174/156720507781788882. PMID 17908052. 
  10. 10.0 10.1 Lajtha, Abel (2013). Metabolism in the Nervous System. Springer Science & Business Media. p. 520. ISBN 978-1-4684-4367-7. https://books.google.com/books?id=du_TBwAAQBAJ&pg=PA520. 
  11. Tashjian, Armen H.; Armstrong, Ehrin J. (2011). Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy. Lippincott Williams & Wilkins. p. 308. ISBN 978-1-4511-1805-6. https://books.google.com/books?id=kjCCMZHInigC&pg=PA308. 
  12. Reyes-Haro, Daniel; Cabrera-Ruíz, Elizabeth; Estrada-Mondragón, Argel; Miledi, Ricardo; Martínez-Torres, Ataúlfo (November 2014). "Modulation of GABA-A receptors of astrocytes and STC-1 cells by taurine structural analogs". Amino Acids 46 (11): 2587–2593. doi:10.1007/s00726-014-1813-0. PMID 25119985. 
  13. Giotti, A.; Luzzi, S.; Spagnesi, S.; Zilletti, L. (August 1983). "Homotaurine: a GABAB antagonist in guinea-pig ileum.". British Journal of Pharmacology 79 (4): 855–862. doi:10.1111/j.1476-5381.1983.tb10529.x. PMID 6652358. 
  14. Mehta, A; Ticku, M (September 1987). "Baclofen induces catatonia in rats". Neuropharmacology 26 (9): 1419–1423. doi:10.1016/0028-3908(87)90108-0. PMID 2823166. 
  15. Serrano, M.Isabel; Serrano, Jose S.; Fernández, Ana; Asadi, Ihklas; Serrano-Martino, M.Carmen (March 1998). "GABAB Receptors and Opioid Mechanisms Involved in Homotaurine-Induced Analgesia". General Pharmacology: The Vascular System 30 (3): 411–415. doi:10.1016/s0306-3623(97)00279-6. PMID 9510095. 
  16. Serrano, Maria Isabel; Serrano, Jose S.; Asadi, Ikhlas; Fernandez, Ana; Serrano-Martino, Maria Carmen (16 June 2001). "Role of K+-channels in homotaurine-induced analgesia". Fundamental and Clinical Pharmacology 15 (3): 167–173. doi:10.1046/j.1472-8206.2001.00026.x. PMID 11468027. 
  17. Olive, M.Foster; Nannini, Michelle A; Ou, Christine J; Koenig, Heather N; Hodge, Clyde W (February 2002). "Effects of acute acamprosate and homotaurine on ethanol intake and ethanol-stimulated mesolimbic dopamine release". European Journal of Pharmacology 437 (1–2): 55–61. doi:10.1016/s0014-2999(02)01272-4. PMID 11864639. 

{{Navbox | name = GABA receptor modulators | title = GABA receptor modulators | state = collapsed | bodyclass = hlist | groupstyle = text-align:center;

 | group1 = Ionotropic
 |  list1 = {{Navbox|subgroup
 | groupstyle = text-align:center
 | groupwidth = 5em
   | group1 = GABAA
   | list1  = 
   | group2 = GABAA
   | list2  = 
 }}
 | group2 = Metabotropic

| list2 =

 | below = 
See also
Receptor/signaling modulators
GABAA receptor positive modulators
GABA metabolism/transport modulators

}}