Biology:Aquaporin-2

From HandWiki
Short description: Protein-coding gene in the species Homo sapiens


A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example


Aquaporin-2 (AQP-2) is found in the apical cell membranes of the kidney's collecting duct principal cells and in intracellular vesicles located throughout the cell. It is encoded by the AQP2 gene.

Regulation

It is the only aquaporin regulated by vasopressin.[1] The basic job of aquaporin 2 is to reabsorb water from the urine while its being removed from the blood by the kidney. Aquaporin 2 is in kidney epithelial cells and usually lies dormant in intracellular vesicle membranes. When it is needed, vasopressin binds to the cell surface vasopressin receptor thereby activating a signaling pathway that causes the aquaporin 2 containing vesicles to fuse with the plasma membrane, so the aquaporin 2 can be used by the cell.[2] This aquaporin is regulated in two ways by the peptide hormone vasopressin:

  • short-term regulation (minutes) through trafficking of AQP2 vesicles to the apical region where they fuse with the apical plasma membrane
  • long-term regulation (days) through an increase in AQP2 gene expression.

This aquaporin is also regulated by food intake. Fasting reduces expression of this aquaporin independently of vasopressin.

Clinical significance

Mutations in this channel are associated with nephrogenic diabetes insipidus, which can be autosomal dominant or recessive. Mutations in the vasopressin receptor cause a similar X-linked phenotype.

Lithium, which is often used to treat bipolar disorder, can cause acquired diabetes insipidus (characterized by the excretion of large volumes of dilute urine) by decreasing the expression of the AQP2 gene.

The expression of the AQP2 gene is increased during conditions associated with water retention such as pregnancy and congestive heart failure.

See also

References

  1. "Aquaporins (water channels): role in vasopressin-activated water transport". Proceedings of the Society for Experimental Biology and Medicine 219 (3): 183–99. December 1998. doi:10.3181/00379727-219-44332. PMID 9824541. 
  2. Lodish, Harvey; Berk, Arnold; Kaiser, Chris A.; Krieger, Monty; Scott, Matthew P.; Bretscher, Anthony; Ploegh, Hidde; Matsudaira, Paul (2008). Molecular Cell Biology (6th ed.). New York: Freeman. p. 445. ISBN 978-0-7167-7601-7. https://archive.org/details/molecularcellbio00harv_624. 

Further reading

External links