Biology:KCNC2

From HandWiki
Short description: Protein-coding gene in humans


A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example

Potassium voltage-gated channel subfamily C member 2 is a protein that in humans is encoded by the KCNC2 gene.[1][2] The protein encoded by this gene is a voltage-gated potassium channel subunit (Kv3.2).[3]

Expression pattern

Kv3.1 and Kv3.2 channels are prominently expressed in neurons that fire at high frequency. Kv3.2 channels are prominently expressed in brain (fast-spiking GABAergic interneurons of the neocortex, hippocampus, and caudate nucleus; terminal fields of thalamocortical projections), and in retinal ganglion cells.[4][5][3]

Physiological role

Kv3.1/Kv3.2 conductance is necessary and kinetically optimized for high-frequency action potential generation.[5][6] Sometimes in heteromeric complexes with Kv3.1; important for the high-frequency firing of fast spiking GABAergic interneurons and retinal ganglion cells; and GABA release via regulation of action potential duration in presynaptic terminals.[3][4]

Pharmacological properties

Kv3.2 currents in heterologous systems are highly sensitive to external tetraethylammonium (TEA) or 4-aminopyridine (4-AP) (IC50 values are 0.1 mM for both of the drugs).[3][5] This can be useful in identifying native channels.[5]

Transcript variants

There are four transcript variants of Kv3.2 gene: Kv3.2a, Kv3.2b, Kv3.2c, Kv3.2d. Kv3.2 isoforms differ only in their C-terminal sequence.[7]

References

  1. "Localization of Shaw-related K+ channel genes on mouse and human chromosomes". Mamm Genome 4 (12): 711–5. Mar 1994. doi:10.1007/BF00357794. PMID 8111118. 
  2. "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels". Pharmacol Rev 57 (4): 473–508. Dec 2005. doi:10.1124/pr.57.4.10. PMID 16382104. 
  3. 3.0 3.1 3.2 3.3 "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels". Pharmacol. Rev. 57 (4): 473–508. December 2005. doi:10.1124/pr.57.4.10. PMID 16382104. 
  4. 4.0 4.1 Kolodin YO (2008-04-27). "Ionic conductances underlying excitability in tonically firing retinal ganglion cells of adult rat". http://ykolodin.50webs.com. 
  5. 5.0 5.1 5.2 5.3 "Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing". Trends in Neurosciences 24 (9): 517–26. September 2001. doi:10.1016/S0166-2236(00)01892-0. PMID 11506885. 
  6. "Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons". Journal of Neuroscience 23 (6): 2058–68. March 2003. doi:10.1523/JNEUROSCI.23-06-02058.2003. PMID 12657664. 
  7. "Contributions of Kv3 channels to neuronal excitability". Annals of the New York Academy of Sciences 868 (1 MOLECULAR AND): 304–43. April 1999. doi:10.1111/j.1749-6632.1999.tb11295.x. PMID 10414303. Bibcode1999NYASA.868..304R. 

External links