Chemistry:Fluvoxamine

From HandWiki
Short description: SSRI antidepressant drug
Fluvoxamine
Fluvoxamine.svg
Fluvoxamine 3D 4ENH.png
Clinical data
Trade namesLuvox, Faverin, others
AHFS/Drugs.comMonograph
MedlinePlusa695004
License data
Pregnancy
category
Routes of
administration
By mouth
Drug classSelective serotonin reuptake inhibitor (SSRI)
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability53% (90% confidence interval: 44–62%)[2]
Protein binding77–80%[2][3]
MetabolismLiver (primarily O-demethylation)
Major: CYP1A2
Minor: CYP3A4
Minor: CYP2C19[2]
Elimination half-life12–13 hours (single dose), 22 hours (repeated dosing)[2]
ExcretionKidney (98%; 94% as metabolites, 4% as unchanged drug)[2]
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
Chemical and physical data
FormulaC15H21F3N2O2
Molar mass318.340 g·mol−1
3D model (JSmol)
 ☒N☑Y (what is this?)  (verify)

Fluvoxamine, commonly sold under the brand names Luvox and Faverin, is an antidepressant of the selective serotonin reuptake inhibitor (SSRI) class.[5] It is primarily used to treat major depressive disorder and obsessive–compulsive disorder (OCD),[6] but is also used to treat anxiety disorders[7] such as panic disorder, social anxiety disorder, and post-traumatic stress disorder.[8][9][10]

Fluvoxamine's side-effect profile is very similar to other SSRIs: constipation, gastrointestinal problems, headache, anxiety, irritation, sexual problems, dry mouth, sleep problems and a risk of suicide at the start of treatment by lifting the psychomotor inhibition, but these effects appear to be significantly weaker than with other SSRIs (except gastrointestinal side-effects).[11]

Although the many drug-drug interactions of fluvoxamine can be problematic (and may temper enthusiasm for its prescribing, advocation and usage to some), its tolerance-profile itself is actually superior in some respects to other SSRIs (particularly with respect to cardiovascular complications), despite its age.[12] Compared to escitalopram and sertraline, indeed, fluvoxamine's gastrointestinal profile may be less intense,[13] often being limited to nausea.[14] Mosapride has demonstrated efficacy in treating fluvoxamine-induced nausea.[15] It is also advised practice to divide total daily doses of fluvoxamine greater than 100 milligrams, with the higher fraction being taken at bedtime (e.g., 50 mg at the beginning of the waking day and 200 mg at bedtime). In any case, high starting daily doses of fluvoxamine rather than the recommended gradual titration (starting at 50 milligrams and gradually titrating, up to 300 if necessary) may predispose to nauseous discomfort.[16]

It is on the World Health Organization's List of Essential Medicines.[17]

Fluvoxamine is related to clovoxamine,[18] a proposed SNRI which has been subject to a certain amount of investigative research but was never marketed.

Medical uses

In many countries (e.g., Australia,[19][20] the UK,[21] and Russia[22]) it is commonly used for major depressive disorder. Fluvoxamine is also approved in the United States for obsessive–compulsive disorder (OCD),[23][6] and social anxiety disorder.[24] In Japan, it is also approved to treat OCD, social anxiety disorder and major depressive disorder.[25][26] Fluvoxamine is indicated for children and adolescents with OCD.[27] The NICE guidelines in the United Kingdom have, as of 2005, authorised its use for obsessive-compulsive disorder in adults and adolescents of any age and children over the age of 7.

There is some evidence that fluvoxamine is effective for generalised social anxiety in adults, though the results may be compromised by having been funded by pharmaceutical companies.[28][29]

There is tentative evidence that fluvoxamine may reduce the overall morbidity of COVID-19 and complications thereof.[30]

Fluvoxamine is also effective for treating a range of anxiety disorders in children and adolescents, including generalized anxiety disorder, social anxiety disorder, panic disorder and separation anxiety disorder.[31][32][33]

The drug works long-term, and retains its therapeutic efficacy for at least one year.[34] It has also been found to possess some analgesic properties in line with other SSRIs and tricyclic antidepressants.[35][36][37]

The average therapeutic dose for fluvoxamine is 100 to 300 mg/day, with 300 mg being the upper daily limit normally recommended. Obsessive-compulsive disorder, however, often requires higher doses; doses of up to 450 mg/day may be prescribed in this case.[38][39][40] In any case with fluvoxamine, treatment is generally begun at 25 or 50 mg and increased in 50 mg increments every 4 to 7 days until a therapeutic optimum is reached.[41]

Adverse effects

Fluvoxamine's side-effect profile is very similar to other SSRIs, with gastrointestinal side effects more characteristic of those receiving treatment with fluvoxamine.[2][23][19][21][42][43]

Common

Common side effects occurring with 1–10% incidence:

  • Abdominal pain
  • Agitation
  • Anxiety
  • Asthenia (weakness)
  • Constipation
  • Diarrhea
  • Dizziness
  • Dyspepsia (indigestion)
  • Headache
  • Hyperhidrosis (excess sweating)
  • Insomnia
  • Loss of appetite
  • Malaise
  • Nausea
  • Nervousness
  • Palpitations
  • Restlessness
  • Sexual dysfunction (including delayed ejaculation, erectile dysfunction, decreased libido, etc.)
  • Somnolence (drowsiness)
  • Tachycardia (high heart rate)
  • Tremor
  • Vomiting
  • Weight loss
  • Xerostomia (dry mouth)
  • Yawning


Uncommon

Uncommon side effects occurring with 0.1–1% incidence:

  • Arthralgia
  • Confusional state
  • Cutaneous hypersensitivity reactions (e.g. oedema [buildup of fluid in the tissues], rash, pruritus)
  • Extrapyramidal side effects (e.g. dystonia, parkinsonism, tremor, etc.)
  • Hallucination
  • Orthostatic hypotension


Rare

Rare side effecs occurring with 0.01–0.1% incidence:

  • Abnormal hepatic (liver) function
  • Galactorrhoea (expulsion of breast milk unrelated to pregnancy or breastfeeding)
  • Mania
  • Photosensitivity (being abnormally sensitive to light)
  • Seizures


Unknown frequency


Interactions

Luvox (fluvoxamine) 100 mg film-coated scored tablets

Fluvoxamine inhibits the following cytochrome P450 enzymes:[45][46][47][48][49][50][51][52][53]

By so doing, fluvoxamine can increase serum concentration of the substrates of these enzymes.[45]

Fluvoxamine may also elevate plasma levels of olanzapine by approximately two times.[56] Combined olanzapine and fluvoxamine, which may cause increased sedation,[57] should be used cautiously and controlled clinically and by therapeutic drug monitoring to avoid olanzapine induced adverse effects and/or intoxication.[58][59]

The plasma levels of oxidatively metabolized benzodiazepines (e.g., triazolam, midazolam, alprazolam and diazepam) are likely to be increased when co-administered with fluvoxamine. However, the clearance of benzodiazepines metabolized by glucuronidation (e.g., lorazepam; oxazepam, which is coincidentally a metabolite of diazepam;[60] temazepam)[61][62] are not affected by fluvoxamine and may be safely taken alongside fluvoxamine should concurrent treatment with a benzodiazepine be necessary.[63] Additionally, it appears that benzodiazepines metabolized by nitro-reduction (clonazepam, nitrazepam) may also, in a somewhat similar vein, be unlikely to be affected by fluvoxamine.[64][65] Concurrent use of diazepam (Valium) is generally inadvisable and should probably not be done.

Using fluvoxamine and alprazolam together can increase alprazolam plasma concentrations.[66] If alprazolam is coadministered with fluvoxamine, the initial alprazolam dose should be reduced to the lowest effective dose.[67][68]

Fluvoxamine and ramelteon coadministration is not indicated.[69][70]

Fluvoxamine has been observed to increase serum concentrations of mirtazapine, which is mainly metabolized by CYP1A2, CYP2D6, and CYP3A4, by three- to four-fold in humans.[71] Caution and adjustment of dosage as necessary are warranted when combining fluvoxamine and mirtazapine.[71]

Fluvoxamine seriously affects the pharmacokinetics of tizanidine and increases the intensity and duration of its effects. Because of the potentially hazardous consequences, the concomitant use of tizanidine with fluvoxamine, or other potent inhibitors of CYP1A2, should be avoided.[72]

When a beta-blocker is required, atenolol,[73] pindolol[74][75][76] and, possibly, metoprolol[77][78][54][79] may be safer choices than propranolol, as the latter's metabolism is seriously, potentially dangerously, inhibited by fluvoxamine.[80] Indeed, fluvoxamine may increase propranolol blood-levels by five-fold.[81]

Anecdotally, more has been spoken about or (rightfully) assumed regarding the mutual compatibility of fluvoxamine and atenolol but the case may be similar with the other-two beta-blockers mentioned herein, also. This may be especially promising in the case of pindolol, when patients with obsessive-compulsive disorder especially, a principal indication for fluvoxamine, need a beta-blocker for hypertensive/cardiac reasons or may benefit from it for additional augmentation.

Clomipramine increases fluvoxamine levels and, conversely-likewise, fluvoxamine increases clomipramine levels (thereby its serotoninergic potential) and inhibits its metabolism to its strongly-noradrenergic metabolite, norclomipramine.[82] Although the two drugs can certainly be prescribed and taken concurrently quite safely, and often are in the case of certain characteristic obsessional complexes,[83] the inter-pharmacology between these two drugs is rather complex and caution is needed in doing this (often necessitating a lower dose of one or the other) to keep blood-levels of the two agents within acceptable levels and avoid serotonin-toxicity. Even-greater caution is needed when combining clomipramine with drugs which inhibit CYP2D6 (e.g., fluoxetine, paroxetine), if it has to be done at all, as CYP2D6-inhibition may do the opposite of fluvoxamine and increase desmethylclomipramine levels to an uncomfortable extent.

Pharmacology

Receptor affinity profile[84][85][86]
Site Ki (nM)
SERT 2.5
NET 1,427
5-HT2C 5,786
α1-adrenergic 1,288
σ1 36

Fluvoxamine is a potent selective serotonin reuptake inhibitor with around 100-fold affinity for the serotonin transporter over the norepinephrine transporter.[46] It has negligible affinity for the dopamine transporter or any other site, with the sole exception of the σ1 receptor.[87][12] It behaves as a potent agonist at this receptor and has the highest affinity (36 nM) of any SSRI for doing so.[87] This may contribute to its antidepressant and anxiolytic effects and may also afford it some efficacy in treating the cognitive symptoms of depression.[88] Unlike some other SSRIs, fluvoxamine's metabolites are pharmacologically neutral.[89]

History

Fluvoxamine was developed by Kali-Duphar,[90] part of Solvay Pharmaceuticals, Belgium, now Abbott Laboratories, and introduced as Floxyfral in Switzerland in 1983.[90] It was approved by the U.S. Food and Drug Administration (FDA) in 1994, and introduced as Luvox in the US.[91] In India, it is available, among several other brands, as Uvox by Abbott.[92] It was one of the first SSRI antidepressants to be launched, and is prescribed in many countries to patients with major depression.[93] It was the first SSRI, a non-TCA drug, approved by the U.S. FDA specifically for the treatment of OCD.[94] At the end of 1995, more than ten million patients worldwide had been treated with fluvoxamine.[95][failed verification] Fluvoxamine was the first SSRI to be registered for the treatment of obsessive compulsive disorder in children by the FDA in 1997.[96] In Japan, fluvoxamine was the first SSRI to be approved for the treatment of depression in 1999[97][98] and was later in 2005 the first drug to be approved for the treatment of social anxiety disorder.[99] Fluvoxamine was the first SSRI approved for clinical use in the United Kingdom.[100] Manufacturers include BayPharma, Synthon, and Teva, among others.[101]

Research directions

While early studies have suggested potential benefits for fluvoxamine as an anti-inflammatory agent and a possible impact on reducing cytokine storms, further studies did not confirm this expected benefit on COVID-19 patients.[102][103] A cytokine storm refers to an excessive immune response characterized by a release of large amounts of pro-inflammatory cytokines.[104]

In May 2022, based on a review of available scientific evidence, the U.S. Food and Drug Administration (FDA) chose not to issue an emergency use authorization covering the use of fluvoxamine to treat COVID-19, saying that, at the time, the data was not sufficient to conclude that fluvoxamine may be effective in treating non-hospitalized people with COVID-19 to prevent serious illness or hospitalization. The agency stated that study results suggest that further clinical trials may be warranted.[105][106]

A large double-blind randomized controlled trial called ACTIV-6, published in 2023 in JAMA, revealed that taking 200 mg of fluvoxamine every day for about two weeks was not significantly better than placebo at shortening the duration of mild or moderate COVID-19 symptoms.[107]Template:Med cn

Environment

Fluvoxamine is a common finding in waters near human settlement.[108] Christensen et al. 2007 finds it is "very toxic to aquatic organisms" by European Union standards.[108]

References

  1. Use During Pregnancy and Breastfeeding
  2. 2.0 2.1 2.2 2.3 2.4 2.5 "Product Information Luvox". TGA eBusiness Services. Abbott Australasia Pty Ltd. 15 January 2013. https://www.ebs.tga.gov.au/ebs/picmi/picmirepository.nsf/pdf?OpenAgent&id=CP-2010-PI-07140-3. 
  3. "Clinical pharmacokinetics of selective serotonin reuptake inhibitors". Clinical Pharmacokinetics 24 (3): 203–220. March 1993. doi:10.2165/00003088-199324030-00003. PMID 8384945. 
  4. "Luvox". ChemSpider. Royal Society of Chemistry. http://www.chemspider.com/Chemical-Structure.4481878. 
  5. "Fluvoxamine Maleate Information". 15 July 2015. https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/fluvoxamine-maleate-information. 
  6. 6.0 6.1 "Antidepressants and suicide in adolescents and adults: a public health experiment with unintended consequences?". P & T 34 (7): 355–378. July 2009. PMID 20140100. 
  7. "Fluvoxamine for the treatment of anxiety disorders in children and adolescents. The Research Unit on Pediatric Psychopharmacology Anxiety Study Group". The New England Journal of Medicine 344 (17): 1279–1285. April 2001. doi:10.1056/NEJM200104263441703. PMID 11323729. 
  8. "Fluvoxamine. An updated review of its use in the management of adults with anxiety disorders". Drugs 60 (4): 925–954. October 2000. doi:10.2165/00003495-200060040-00006. PMID 11085201. 
  9. "Fluvoxamine in the treatment of anxiety disorders". Neuropsychiatric Disease and Treatment 1 (4): 289–299. December 2005. PMID 18568110. 
  10. "Fluvoxamine in the treatment of panic disorder: a multi-center, double-blind, placebo-controlled study in outpatients". Psychiatry Research 103 (1): 1–14. August 2001. doi:10.1016/S0165-1781(01)00265-7. PMID 11472786. 
  11. Vezmar, S. et al., « Pharmacokinetics and Efficacy of Fluvoxamine and Amitriptyline in Depression », J Pharmacol Sci, vol. 110, no 1, 2009, p. 98 – 104 (ISSN 1347-8648)
  12. 12.0 12.1 "Tolerability and safety of fluvoxamine and other antidepressants". International Journal of Clinical Practice 60 (4): 482–491. April 2006. doi:10.1111/j.1368-5031.2006.00865.x. PMID 16620364. 
  13. "Gastrointestinal side effects associated with antidepressant treatments in patients with major depressive disorder: A systematic review and meta-analysis". Progress in Neuro-Psychopharmacology & Biological Psychiatry (Elsevier BV) 109: 110266. July 2021. doi:10.1016/j.pnpbp.2021.110266. PMID 33549697. 
  14. "Fluvoxamine in the treatment of anxiety disorders". Neuropsychiatric Disease and Treatment 1 (4): 289–299. December 2005. PMID 18568110. 
  15. "Characteristics of fluvoxamine-induced nausea". Psychiatry Research (Elsevier BV) 104 (3): 259–264. November 2001. doi:10.1016/s0165-1781(01)00320-1. PMID 11728615. 
  16. Ware, Michael R. (1 March 1997). "Fluvoxamine: A Review of the Controlled Trials in Depression". The Journal of Clinical Psychiatry (Physicians Postgraduate Press, Inc.) 58 (suppl 5): 15–23. ISSN 0160-6689. PMID 9184623. https://www.psychiatrist.com/read-pdf/7342/. Retrieved 1 December 2023. 
  17. World Health Organization model list of essential medicines: 22nd list (2021). Geneva: World Health Organization. 2021. WHO/MHP/HPS/EML/2021.02. 
  18. "Clovoxamine and fluvoxamine-2 biogenic amine re-uptake inhibiting antidepressants: quantitative EEG, psychometric and pharmacokinetic studies in man". Journal of Neural Transmission (Springer Science and Business Media LLC) 49 (1–2): 63–86. 1980. doi:10.1007/bf01249190. PMID 6777458. 
  19. 19.0 19.1 Australian Medicines Handbook (2013 ed.). Adelaide: The Australian Medicines Handbook Unit Trust. 2013. ISBN 978-0-9805790-9-3. 
  20. "Luvox Tablets". https://www.nps.org.au/medical-info/medicine-finder/luvox-tablets. 
  21. 21.0 21.1 Joint Formulary Committee (2013). British National Formulary (BNF) (65 ed.). London, UK: Pharmaceutical Press. ISBN 978-0-85711-084-8. https://archive.org/details/bnf65britishnati0000unse. 
  22. "Summary of Full Prescribing Information: Fluvoxamine" (in ru). http://www.rlsnet.ru/mnn_index_id_307.htm. 
  23. 23.0 23.1 "Fluvoxamine Maleate tablet, coated prescribing information". DailyMed. U.S. National Library of Medicine. 14 December 2018. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=7ecd83ec-88f5-4f85-9cc2-9068375d8820. 
  24. "Luvox CR approved for OCD and SAD". 29 February 2008. https://www.empr.com/home/news/luvox-cr-approved-for-ocd-and-sad/. 
  25. "2005 News Releases". https://www.astellas.com/en/corporate/news/detail/luvox-receives-approval-for-so.html. 
  26. "International Approvals: Ebixa, Depromel/Luvox, M-Vax". https://www.medscape.com/viewarticle/514804. 
  27. "Fluvoxamine Product Insert". Jazz Pharmaceuticals, Inc.. U.S. Food and Drug Administration. March 2005. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/022235lbl.pdf. 
  28. "Pharmacotherapy for social anxiety disorder (SAnD)". The Cochrane Database of Systematic Reviews 10 (10): CD001206. October 2017. doi:10.1002/14651858.CD001206.pub3. PMID 29048739. 
  29. "Efficacy and tolerability of fluvoxamine in adults with social anxiety disorder: A meta-analysis". Medicine (Baltimore) 97 (28): e11547. July 2018. doi:10.1097/MD.0000000000011547. PMID 29995828. 
  30. "Fluvoxamine for the treatment of COVID-19". The Cochrane Database of Systematic Reviews 2022 (9): CD015391. September 2022. doi:10.1002/14651858.CD015391. PMID 36103313. 
  31. "Antidepressants for children and teenagers: what works for anxiety and depression?" (in en). NIHR Evidence (National Institute for Health and Care Research). 3 November 2022. doi:10.3310/nihrevidence_53342. https://evidence.nihr.ac.uk/collection/antidepressants-for-children-and-teenagers-what-works-anxiety-depression/. 
  32. "Antidepressants in Children and Adolescents: Meta-Review of Efficacy, Tolerability and Suicidality in Acute Treatment". Frontiers in Psychiatry 11: 717. 2 September 2020. doi:10.3389/fpsyt.2020.00717. PMID 32982805. 
  33. "Efficacy and acceptability of pharmacological, psychosocial, and brain stimulation interventions in children and adolescents with mental disorders: an umbrella review". World Psychiatry 20 (2): 244–275. June 2021. doi:10.1002/wps.20881. PMID 34002501. 
  34. "Fluvoxamine. An updated review of its pharmacology, and therapeutic use in depressive illness". Drugs 46 (5): 895–924. November 1993. doi:10.2165/00003495-199346050-00008. PMID 7507038. 
  35. "[Evaluation of analgesic action of fluvoxamine compared with efficacy of imipramine and tramadol for treatment of sciatica--open trial]". Wiadomosci Lekarskie 55 (1–2): 42–50. 2002. PMID 12043315. 
  36. "From selective to highly selective SSRIs: a comparison of the antinociceptive properties of fluoxetine, fluvoxamine, citalopram and escitalopram". European Neuropsychopharmacology 16 (6): 464–468. August 2006. doi:10.1016/j.euroneuro.2005.11.013. PMID 16413173. 
  37. "Central analgesic effects of desipramine, fluvoxamine, and moclobemide after single oral dosing: a study in healthy volunteers". Clinical Pharmacology and Therapeutics 54 (3): 339–344. September 1993. doi:10.1038/clpt.1993.156. PMID 8375130. 
  38. Seibell PJ, Hamblin RJ, Hollander E. Obsessive-compulsive disorder: Overview and standard treatment strategies. Psychiatric Annals. 2015 Jun 1;45(6):297-302.
  39. Rivas-Vazquez, R.A. and Blais, M.A., 1997. Selective serotonin reuptake inhibitors and atypical antidepressants: A review and update for psychologists. Professional Psychology: Research and Practice, 28(6), p.526.
  40. Middleton, R., Wheaton, M.G., Kayser, R. and Simpson, H.B., 2019. Treatment resistance in obsessive-compulsive disorder. Treatment resistance in psychiatry: risk factors, biology, and management, pp.165-177.
  41. Figgitt, D.P. and McClellan, K.J., 2000. Fluvoxamine: an updated review of its use in the management of adults with anxiety disorders. Drugs, 60, pp.925-954.
  42. The Maudsley prescribing guidelines in psychiatry. West Sussex: Wiley-Blackwell. 2012. ISBN 978-0-470-97948-8. 
  43. "Faverin 100 mg film-coated tablets – Summary of Product Characteristics (SPC)". electronic Medicines Compendium. Abbott Healthcare Products Limited. 14 May 2013. http://www.medicines.org.uk/emc/medicine/22124/SPC/Faverin+100+mg+film-coated+tablets/. 
  44. "Top Ten Legal Drugs Linked to Violence". Time. 7 January 2011. http://healthland.time.com/2011/01/07/top-ten-legal-drugs-linked-to-violence/. Retrieved 10 September 2014. 
  45. 45.0 45.1 Pharmacotherapy of Depression (2nd ed.). Springer. 2011. p. 49. doi:10.1007/978-1-60327-435-7. ISBN 978-1-60327-435-7. 
  46. 46.0 46.1 Goodman and Gilman's The Pharmacological Basis of Therapeutics (12th ed.). New York: McGraw-Hill Professional. 2010. ISBN 978-0-07-162442-8. 
  47. "Pharmacokinetic-pharmacodynamic relationship of the selective serotonin reuptake inhibitors". Clinical Pharmacokinetics 31 (6): 444–469. December 1996. doi:10.2165/00003088-199631060-00004. PMID 8968657. 
  48. "Clinical pharmacokinetics of fluvoxamine: applications to dosage regimen design". The Journal of Clinical Psychiatry 58 (Suppl 5): 7–14. 1997. PMID 9184622. 
  49. "Translational pharmacokinetics: current issues with newer antidepressants". Depression and Anxiety 8 (Suppl 1): 64–70. 1998. doi:10.1002/(SICI)1520-6394(1998)8:1+<64::AID-DA10>3.0.CO;2-S. PMID 9809216. 
  50. "Pharmacogenetics of antipsychotics: useful for the clinician?". Current Opinion in Psychiatry 20 (2): 126–130. March 2007. doi:10.1097/YCO.0b013e328017f69f. PMID 17278909. 
  51. "Drug interactions with smoking". American Journal of Health-System Pharmacy 64 (18): 1917–1921. September 2007. doi:10.2146/ajhp060414. PMID 17823102. 
  52. "Prescribers Warned of Tizanidine Drug Interactions". Medscape News. Medscape. 13 April 2007. http://www.medscape.com/viewarticle/555194_print. 
  53. "Fluvoxamine (Oral Route) Precautions". https://www.mayoclinic.org/drugs-supplements/fluvoxamine-oral-route/precautions/drg-20066874?p=1. 
  54. 54.0 54.1 "Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug-drug interactions: an update". Current Drug Metabolism 3 (1): 13–37. February 2002. doi:10.2174/1389200023338017. PMID 11876575. 
  55. "Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers". FDA. 26 May 2021. https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers. 
  56. "Metabolic drug interactions with newer antipsychotics: a comparative review". Basic & Clinical Pharmacology & Toxicology 100 (1): 4–22. January 2007. doi:10.1111/j.1742-7843.2007.00017.x. PMID 17214606. 
  57. "Olanzapine augmentation of fluvoxamine-refractory obsessive-compulsive disorder (OCD): a 12-week open trial". Psychiatry Research 96 (2): 91–98. October 2000. doi:10.1016/s0165-1781(00)00203-1. PMID 11063782. 
  58. "Fluvoxamine augmentation of olanzapine in chronic schizophrenia: pharmacokinetic interactions and clinical effects". Journal of Clinical Psychopharmacology 22 (5): 502–506. October 2002. doi:10.1097/00004714-200210000-00010. PMID 12352274. 
  59. "Movox" (in en). 23 November 2020. https://www.nps.org.au/medicine-finder/movox-tablets. 
  60. "Metabolic profile of oxazepam and related benzodiazepines: clinical and forensic aspects". Drug Metabolism Reviews 49 (4): 451–463. November 2017. doi:10.1080/03602532.2017.1377223. PMID 28903606. 
  61. "Benzodiazepine Metabolism and Pharmacokinetics". 2016. http://paindr.com/wp-content/uploads/2015/10/Revised-BZD_-9-30.pdf. 
  62. "Benzodiazepines for alcohol withdrawal in the elderly and in patients with liver disease". Pharmacotherapy 16 (1): 49–57. 1996. doi:10.1002/j.1875-9114.1996.tb02915.x. PMID 8700792. 
  63. "fluvoxamine maleate: PRODUCT MONOGRAPH". 2016. http://www.mylan.ca/-/media/mylanca/documents/english/product%20pdf/pdfs%20dec%202015/luvox-pm-2016.01.08.pdf. 
  64. "Luvox Data Sheet". Medsafe, New Zealand. 2017. http://www.medsafe.govt.nz/profs/datasheet/l/luvoxtab.pdf. 
  65. "Faverin Tablets" (in en). July 2022. https://www.nps.org.au/medicine-finder/faverin-tablets. 
  66. "Effects of concomitant fluvoxamine on the metabolism of alprazolam in Japanese psychiatric patients: interaction with CYP2C19 mutated alleles". European Journal of Clinical Pharmacology 58 (12): 829–833. April 2003. doi:10.1007/s00228-003-0563-9. PMID 12698310. 
  67. Psychiatric Drugs in Children and Adolescents: Basic Pharmacology and Practical Applications. Springer-Verlag Wien. 2014. pp. 131. ISBN 978-3-7091-1500-8. https://books.google.com/books?id=AmQlBAAAQBAJ&pg=PA131. 
  68. "A pharmacokinetic and pharmacodynamic evaluation of the combined administration of alprazolam and fluvoxamine". European Journal of Clinical Pharmacology 46 (1): 35–39. 1994. doi:10.1007/bf00195913. PMID 8005185. 
  69. "Metabolism of ramelteon in human liver microsomes and correlation with the effect of fluvoxamine on ramelteon pharmacokinetics". Drug Metabolism and Disposition 38 (8): 1381–1391. August 2010. doi:10.1124/dmd.110.034009. PMID 20478852. 
  70. "Pharmacotherapy of insomnia with ramelteon: safety, efficacy and clinical applications". Journal of Central Nervous System Disease 3: 51–65. 12 April 2011. doi:10.4137/JCNSD.S1611. PMID 23861638. 
  71. 71.0 71.1 "Fluvoxamine augmentation increases serum mirtazapine concentrations three- to fourfold". The Annals of Pharmacotherapy 35 (10): 1221–1223. October 2001. doi:10.1345/aph.1A014. PMID 11675851. 
  72. "Fluvoxamine drastically increases concentrations and effects of tizanidine: a potentially hazardous interaction". Clinical Pharmacology and Therapeutics 75 (4): 331–341. April 2004. doi:10.1016/j.clpt.2003.12.005. PMID 15060511. 
  73. "Clinical pharmacokinetics of fluvoxamine". Clinical Pharmacokinetics 27 (3): 175–190. September 1994. doi:10.2165/00003088-199427030-00002. PMID 7988100. 
  74. "Factors affecting fluvoxamine antidepressant activity: influence of pindolol and 5-HTTLPR in delusional and nondelusional depression". Biological Psychiatry 50 (5): 323–330. September 2001. doi:10.1016/s0006-3223(01)01118-0. PMID 11543734. 
  75. "The effects of pindolol addition to fluvoxamine and buspirone in chronic mild stress model of depression.". Behavioural Pharmacology 7: 105. May 1996. 
  76. "Effect of adjuvant pindolol on the antiobsessional response to fluvoxamine: a double-blind, placebo-controlled study". International Clinical Psychopharmacology 13 (5): 219–224. September 1998. doi:10.1097/00004850-199809000-00005. PMID 9817627. 
  77. "The oxidative metabolism of metoprolol in human liver microsomes: inhibition by the selective serotonin reuptake inhibitors". European Journal of Clinical Pharmacology 54 (3): 261–264. May 1998. doi:10.1007/s002280050456. PMID 9681670. 
  78. "In vivo inhibition of CYP2C19 but not CYP2D6 by fluvoxamine". British Journal of Clinical Pharmacology 42 (4): 518–521. October 1996. doi:10.1046/j.1365-2125.1996.45319.x. PMID 8904628. 
  79. "Inhibition of the oxidative metabolism of metoprolol by selective serotonin reuptake inhibitors in human liver microsomes.". Fundamental and Clinical Pharmacology 2 (11): 147. 1997. 
  80. "Overview of the pharmacokinetics of fluvoxamine". Clinical Pharmacokinetics 29 (Suppl 1): 1–9. 1995. doi:10.2165/00003088-199500291-00003. PMID 8846617. 
  81. "Clinically relevant drug interactions in anxiety disorders". Human Psychopharmacology 27 (3): 239–253. May 2012. doi:10.1002/hup.2217. PMID 22311403. 
  82. "Combination treatment with clomipramine and fluvoxamine: drug monitoring, safety, and tolerability data". The Journal of Clinical Psychiatry 57 (6): 257–264. June 1996. PMID 8666564. 
  83. "Clomipramine in Combination with Fluvoxamine: A Potent Medication Combination for Severe or Refractory Pediatric OCD". Journal of the Canadian Academy of Child and Adolescent Psychiatry = Journal de l'Academie Canadienne de Psychiatrie de l'Enfant et de l'Adolescent 30 (4): 273–277. November 2021. PMID 34777510. 
  84. "High occupancy of sigma-1 receptors in the human brain after single oral administration of fluvoxamine: a positron emission tomography study using [11C]SA4503". Biological Psychiatry 62 (8): 878–883. October 2007. doi:10.1016/j.biopsych.2007.04.001. PMID 17662961. 
  85. The American Psychiatric Publishing textbook of psychopharmacology (4th ed.). Arlington, VA: American Psychiatric Pub.. 2009. pp. 354. ISBN 978-1-585-62386-0. OCLC 320111564. 
  86. "Possibility of Predicting Serotonin Transporter Occupancy From the In Vitro Inhibition Constant for Serotonin Transporter, the Clinically Relevant Plasma Concentration of Unbound Drugs, and Their Profiles for Substrates of Transporters". Journal of Pharmaceutical Sciences 106 (9): 2345–2356. September 2017. doi:10.1016/j.xphs.2017.05.007. PMID 28501470. 
  87. 87.0 87.1 "Sigma-1 receptors and selective serotonin reuptake inhibitors: clinical implications of their relationship". Central Nervous System Agents in Medicinal Chemistry 9 (3): 197–204. September 2009. doi:10.2174/1871524910909030197. PMID 20021354. 
  88. "Cognition and depression: the effects of fluvoxamine, a sigma-1 receptor agonist, reconsidered". Human Psychopharmacology 25 (3): 193–200. April 2010. doi:10.1002/hup.1106. PMID 20373470. 
  89. "Pharmacology of serotonin uptake inhibitors: focus on fluvoxamine". Journal of Psychiatry & Neuroscience 16 (2 Suppl 1): 10–18. July 1991. PMID 1931931. 
  90. 90.0 90.1 Sittig's Pharmaceutical Manufacturing Encyclopedia (3rd ed.). William Andrew. 2008. p. 1699. ISBN 978-0-8155-1526-5. http://www.armchairpatriot.com/Encyclopedias/Encyclopedia-Pharmaceutical%20Manufacturing%20%283rd%20edition%29/15265_v02_04.pdf. Retrieved 17 October 2013. 
  91. "The Food and Drug Administration's deliberations on antidepressant use in pediatric patients". Pediatrics 116 (1): 195–204. July 2005. doi:10.1542/peds.2005-0074. PMID 15995053. 
  92. "Brand Index―Fluvoxamine India". http://www.drugsupdate.com/brand/showavailablebrands/184. 
  93. "Fluvoxamine versus other anti-depressive agents for depression". The Cochrane Database of Systematic Reviews (3): CD006114. March 2010. doi:10.1002/14651858.CD006114.pub2. PMID 20238342. 
  94. "OCD Medication". http://www.brainphysics.com/medications.php. 
  95. "Fluvoxamine Product Monograph". 1999. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/021519s003lbl.pdf. 
  96. "Luvox Approved For Obsessive Compulsive Disorder in Children and Teens". http://www.pslgroup.com/dg/2261a.htm. 
  97. "Japanese experience with milnacipran, the first serotonin and norepinephrine reuptake inhibitor in Japan". Neuropsychiatric Disease and Treatment 3 (1): 41–58. February 2007. doi:10.2147/nedt.2007.3.1.41. PMID 19300537. 
  98. Wishart, David S.; Djombou Feunang, Yannick; Marcu, Ana; Guo, An Chi; Liang, Kevin; Vázquez Fresno, Rosa; Sajed, Tanvir; Johnson, Daniel et al.. "Showing metabocard for Fluvoxamine (HMDB0014322)". http://www.hmdb.ca/metabolites/HMDB0014322. 
  99. "Solvay's Fluvoxamine maleate is first drug approved for the treatment of social anxiety disorder in Japan". https://www.fdanews.com/articles/81585-solvay-s-fluvoxamine-maleate-is-first-drug-approved-for-treatment-of-social-anxiety-disorder-in-japan. 
  100. Clinical Pharmacy and Therapeutics (4th ed.). Edinburgh: Churchill Livingstone Elsevier. 2007. ISBN 978-0-7020-4293-5. 
  101. "Fluvoxamine". https://www.drugbank.ca/drugs/DB00176. 
  102. "Fluvoxamine in Nonhospitalized Patients With Acute COVID-19 Infection and the Lack of Efficacy in Reducing Rates of Hospitalization, Mechanical Ventilation, and Mortality in Placebo-Controlled Trials: A Systematic Review and Meta-Analysis". American Journal of Therapeutics 29 (3): e298–e304. 2022. doi:10.1097/MJT.0000000000001496. PMID 35383578. 
  103. "Selective serotonin reuptake inhibitors: New hope in the fight against COVID-19". Frontiers in Pharmacology 13: 1036093. 2022. doi:10.3389/fphar.2022.1036093. PMID 36532776. 
  104. "The cytokine storm and COVID-19". Journal of Medical Virology 93 (1): 250–256. January 2021. doi:10.1002/jmv.26232. PMID 32592501. 
  105. "FDA declines to authorize common antidepressant as COVID treatment". Reuters. 16 May 2022. https://www.reuters.com/business/healthcare-pharmaceuticals/fda-declines-authorize-common-antidepressant-covid-treatment-2022-05-16/. 
  106. Template:Cite tech report This article incorporates text from this source, which is in the public domain.
  107. Ingram, Ian (17 November 2023). "Higher-Dose Fluvoxamine Fails for COVID Outpatients". https://www.medpagetoday.com/infectiousdisease/covid19/107439. 
  108. 108.0 108.1

External links