Chemistry:Paraxanthine

From HandWiki
Paraxanthine
Skeletal formula of paraxanthine
Ball-and-stick model of the paraxanthine model
Names
IUPAC name
1,7-Dimethyl-3H-purine-2,6-dione
Other names
Paraxanthine,
1,7-Dimethylxanthine
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
UNII
Properties
C7H8N4O2
Molar mass 180.167 g·mol−1
Melting point 351 to 352 °C (664 to 666 °F; 624 to 625 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

Paraxanthine, also known as 1,7-dimethylxanthine, is a metabolite of theophylline and theobromine, two well-known stimulants found in coffee, tea, and chocolate. It is a member of the xanthine family of alkaloids, which includes theophylline, theobromine and caffeine.

Production and metabolism

Paraxanthine is not known to be produced by plants[1] but is observed in nature as a metabolite of caffeine in animals and some species of bacteria.[2]

Paraxanthine is the primary metabolite of caffeine in humans and other animals, such as mice.[3] Shortly after ingestion, roughly 84% of caffeine is metabolized into paraxanthine by hepatic cytochrome P450, which removes a methyl group from the N3 position of caffeine.[4][5][6] After formation, paraxanthine can be broken down to 7-methylxanthine by demethylation of the N1 position,[7] which is subsequently demethylated into xanthine or oxidized by CYP2A6 and CYP1A2 into 1,7-dimethyluric acid.[6] In another pathway, paraxanthine is broken down into 5-acetylamino-6-formylamino-3-methyluracil through N-acetyl-transferase 2, which is then broken down into 5-acetylamino-6-amino-3-methyluracil by non-enzymatic decomposition.[8] In yet another pathway, paraxanthine is metabolized CYPIA2 forming 1-methyl-xanthine, which can then be metabolized by xanthine oxidase to form 1-methyl-uric acid.[8]

Certain proposed synthetic pathways of caffeine make use of paraxanthine as a bypass intermediate. However, its absence in plant alkaloid assays implies that these are infrequently, if ever, directly produced by plants.[citation needed]

Pharmacology and physiological effects

Like caffeine, paraxanthine is a psychoactive central nervous system (CNS) stimulant.[2]

Pharmacodynamics

Studies indicate that, similar to caffeine, simultaneous antagonism of adenosine receptors[9] is responsible for paraxanthine's stimulatory effects. Paraxanthine adenosine receptor binding affinity (21 μM for A1, 32 μM for A2A, 4.5 μM for A2B, and >100 for μM for A3) is similar or slightly stronger than caffeine, but weaker than theophylline.[10]

Paraxanthine is a selective inhibitor of cGMP-preferring phosphodiesterase (PDE9) activity[11] and is hypothesized to increase glutamate and dopamine release by potentiating nitric oxide signaling.[12] Activation of a nitric oxide-cGMP pathway may be responsible for some of the behavioral effects of paraxanthine that differ from those associated with caffeine.[13]

Paraxanthine is a competitive nonselective phosphodiesterase inhibitor[14] which raises intracellular cAMP, activates PKA, inhibits TNF-alpha[15][16] and leukotriene[17] synthesis, and reduces inflammation and innate immunity.[17]

Unlike caffeine, paraxanthine acts as an enzymatic effector of Na+/K+ ATPase. As a result, it is responsible for increased transport of potassium ions into skeletal muscle tissue.[18] Similarly, the compound also stimulates increases in calcium ion concentration in muscle.[19]

Pharmacokinetics

The pharmacokinetic parameter for paraxanthine are similar to those for caffeine, but differ significantly from those for theobromine and theophylline, the other major caffeine-derived methylxanthine metabolites in humans (Table 1).

Table 1. Comparative pharmacokinetics of caffeine, and caffeine-derived methylxanthines[20]
Plasma Half-Life

(t1/2; hr)

Volume of Distribution

(Vss,unbound; l/kg)

Plasma Clearance

(CL; ml/min/kg)

Caffeine 4.1 ± 1.3 1.06 ± 0.26 2.07 ± 0.96
Paraxanthine 3.1 ± 0.8 1.18 ± 0.37 2.20 ± 0.91
Theobromine 7.2 ± 1.6 0.79 ± 0.15 1.20 ± 0.40
Theophylline 6.2 ± 1.4 0.77 ± 0.17 0.93 ± 0.22

Uses

Paraxanthine is a phosphodiesterase type 9 (PDE9) inhibitor and it is sold as a research molecule for this same purpose.[21]

Toxicity

Paraxanthine is believed to exhibit a lower toxicity than caffeine and the caffeine metabolite, theophylline.[22][23] In a mouse model, intraperitoneal paraxanthine doses of 175 mg/kg/day did not result in animal death or overt signs of stress;[24] by comparison, the intraperitoneal LD50 for caffeine in mice is reported at 168 mg/kg.[25] In in vitro cell culture studies, paraxanthine is reported to be less harmful than caffeine and the least harmful of the caffeine-derived metabolites in terms of hepatocyte toxicity.[26]

As with other methylxanthines, paraxanthine is reported to be teratogenic when administered in high doses;[24] but it is a less potent teratogen as compared to caffeine and theophylline. A mouse study on the potentiating effects of methylxanthines coadministered with mitomycin C on teratogenicity reported the incidence of birth defects for caffeine, theophylline, and paraxanthine to be 94.2%, 80.0%, and 16.9%, respectively; additionally, average birth weight decreased significantly in mice exposed to caffeine or theophylline when coadministered with mitomycin C, but not for paraxanthine coadministered with mitomycin C.[27]

Paraxanthine was reported to be significantly less clastogenic compared to caffeine or theophylline in an in vitro study using human lymphocytes.[28]

References

  1. Stavric, B. (1988-01-01). "Methylxanthines: Toxicity to humans. 3. Theobromine, paraxanthine and the combined effects of methylxanthines" (in en). Food and Chemical Toxicology 26 (8): 725–733. doi:10.1016/0278-6915(88)90073-7. ISSN 0278-6915. PMID 3058562. 
  2. 2.0 2.1 "Catabolism of caffeine in plants and microorganisms". Frontiers in Bioscience 9 (1–3): 1348–59. May 2004. doi:10.2741/1339. PMID 14977550. 
  3. "Biotransformation of methylxanthines in mammalian cell lines genetically engineered for expression of single cytochrome P450 isoforms. Allocation of metabolic pathways to isoforms and inhibitory effects of quinolones". Toxicology 82 (1–3): 169–89. October 1993. doi:10.1016/0300-483x(93)90064-y. PMID 8236273. 
  4. "Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels". Molecular Pharmacology 74 (4): 980–9. October 2008. doi:10.1124/mol.108.048207. PMID 18621927. 
  5. "Caffeine and exercise: metabolism and performance". Canadian Journal of Applied Physiology 19 (2): 111–38. June 1994. doi:10.1139/h94-010. PMID 8081318. 
  6. 6.0 6.1 "Catabolism of caffeine in plants and microorganisms". Frontiers in Bioscience 9 (1–3): 1348–59. May 2004. doi:10.2741/1339. PMID 14977550. 
  7. "Genetic characterization of caffeine degradation by bacteria and its potential applications". Microbial Biotechnology 8 (3): 369–78. May 2015. doi:10.1111/1751-7915.12262. PMID 25678373. 
  8. 8.0 8.1 Caffeine : chemistry, analysis, function and effects. Preedy, Victor R.,, Royal Society of Chemistry (Great Britain). Cambridge, U.K.. 2012. ISBN 9781849734752. OCLC 810337257. 
  9. "Adenosine receptors: development of selective agonists and antagonists". Progress in Clinical and Biological Research 230 (1): 41–63. 1987. PMID 3588607. 
  10. Müller, Christa E.; Jacobson, Kenneth A. (2011), Fredholm, Bertil B., ed., "Xanthines as Adenosine Receptor Antagonists" (in en), Methylxanthines, Handbook of Experimental Pharmacology (Springer) 200 (200): pp. 151–199, doi:10.1007/978-3-642-13443-2_6, ISBN 978-3-642-13443-2, PMID 20859796 
  11. Orrú, Marco; Guitart, Xavier; Karcz-Kubicha, Marzena; Solinas, Marcello; Justinova, Zuzana; Barodia, Sandeep Kumar; Zanoveli, Janaina; Cortes, Antoni et al. (April 2013). "Psychostimulant pharmacological profile of paraxanthine, the main metabolite of caffeine in humans". Neuropharmacology 67C: 476–484. doi:10.1016/j.neuropharm.2012.11.029. ISSN 0028-3908. PMID 23261866. 
  12. Ferré, Sergi; Orrú, Marco; Guitart, Xavier (2013). "Paraxanthine: Connecting Caffeine to Nitric Oxide Neurotransmission". Journal of Caffeine Research 3 (2): 72–78. doi:10.1089/jcr.2013.0006. ISSN 2156-5783. PMID 24761277. 
  13. Orrú, Marco (2013). "Psychostimulant pharmacological profile of paraxanthine, the main metabolite of caffeine in humans". Neuropharmacology 67C: 476–484. doi:10.1016/j.neuropharm.2012.11.029. PMID 23261866. 
  14. "Cyclic nucleotide phosphodiesterases". The Journal of Allergy and Clinical Immunology 108 (5): 671–80. November 2001. doi:10.1067/mai.2001.119555. PMID 11692087. 
  15. "Insights into the regulation of TNF-alpha production in human mononuclear cells: the effects of non-specific phosphodiesterase inhibition". Clinics 63 (3): 321–8. June 2008. doi:10.1590/S1807-59322008000300006. PMID 18568240. 
  16. "Pentoxifylline inhibits TNF-alpha production from human alveolar macrophages". American Journal of Respiratory and Critical Care Medicine 159 (2): 508–11. February 1999. doi:10.1164/ajrccm.159.2.9804085. PMID 9927365. 
  17. 17.0 17.1 "Leukotrienes: underappreciated mediators of innate immune responses". Journal of Immunology 174 (2): 589–94. January 2005. doi:10.4049/jimmunol.174.2.589. PMID 15634873. http://www.jimmunol.org/cgi/content/full/174/2/589. 
  18. "K+ transport in resting rat hind-limb skeletal muscle in response to paraxanthine, a caffeine metabolite". Canadian Journal of Physiology and Pharmacology 77 (11): 835–43. November 1999. doi:10.1139/y99-095. PMID 10593655. 
  19. "Paraxanthine, a caffeine metabolite, dose dependently increases [Ca(2+)](i) in skeletal muscle". Journal of Applied Physiology 89 (6): 2312–7. December 2000. doi:10.1152/jappl.2000.89.6.2312. PMID 11090584. 
  20. Lelo, A.; Birkett, D. J.; Robson, R. A.; Miners, J. O. (August 1986). "Comparative pharmacokinetics of caffeine and its primary demethylated metabolites paraxanthine, theobromine and theophylline in man". British Journal of Clinical Pharmacology 22 (2): 177–182. doi:10.1111/j.1365-2125.1986.tb05246.x. ISSN 0306-5251. PMID 3756065. 
  21. "Paraxanthine". https://www.caymanchem.com/pdfs/21068.pdf. 
  22. Neal L. Benowitz; Peyton Jacob; Haim Mayan; Charles Denaro (1995). "Sympathomimetic effects of paraxanthine and caffeine in humans". Clinical Pharmacology & Therapeutics 58 (6): 684–691. doi:10.1016/0009-9236(95)90025-X. PMID 8529334. http://www.nature.com/clpt/journal/v58/n6/abs/clpt1995184a.html. 
  23. Institute of Medicine (US) Committee on Military Nutrition Research (2001). Caffeine for the Sustainment of Mental Task Performance: Formulations for Military Operations. Washington (DC): National Academies Press (US). ISBN 978-0-309-08258-7. http://www.ncbi.nlm.nih.gov/books/NBK223802/. 
  24. 24.0 24.1 York, R. G.; Randall, J. L.; Scott, W. J. (1986). "Teratogenicity of paraxanthine (1,7-dimethylxanthine) in C57BL/6J mice". Teratology 34 (3): 279–282. doi:10.1002/tera.1420340307. ISSN 0040-3709. PMID 3798364. 
  25. (in en) Registry of Toxic Effects of Chemical Substances. National Institute for Occupational Safety and Health. 1987. https://books.google.com/books?id=fDVaIb9H7DAC&q=caffeine+mouse+LD50+intraperitoneal+168+mg%2Fkg&pg=PA1373. 
  26. Gressner, Olav A.; Lahme, Birgit; Siluschek, Monika; Gressner, Axel M. (2009). "Identification of paraxanthine as the most potent caffeine-derived inhibitor of connective tissue growth factor expression in liver parenchymal cells". Liver International 29 (6): 886–897. doi:10.1111/j.1478-3231.2009.01987.x. ISSN 1478-3231. PMID 19291178. 
  27. Nakatsuka, Toshio; Hanada, Satoshi; Fujii, Takaaki (1983). "Potentiating effects of methylxanthines on teratogenicity of mitomycin C in mice" (in en). Teratology 28 (2): 243–247. doi:10.1002/tera.1420280214. ISSN 1096-9926. PMID 6417813. 
  28. Weinstein, David; Mauer, Irving; Katz, Marion L.; Kazmer, Sonja (1975). "The effect of methylxanthines on chromosomes of human lymphocytes in culture" (in en). Mutation Research/Environmental Mutagenesis and Related Subjects 31 (1): 57–61. doi:10.1016/0165-1161(75)90064-3. ISSN 0165-1161. PMID 1128545. 

External links