Biology:Androgen receptor

From HandWiki
Short description: Mammalian protein found in humans

Template:Cs1 config

A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example
Androgen_recep
PDB 1xow EBI.jpg
crystal structure of the human androgen receptor ligand binding domain bound with an androgen receptor nh2-terminal peptide, ar20-30, and r1881
Identifiers
SymbolAndrogen_recep
PfamPF02166
InterProIPR001103
Normal function of the androgen receptor. Testosterone (T) enters the cell and, if 5-alpha-reductase is present, is converted into dihydrotestosterone (DHT). Upon steroid binding, the androgen receptor (AR) undergoes a conformational change and releases heat-shock proteins (hsps). Phosphorylation (P) occurs before or after steroid binding. The AR translocates to the nucleus where dimerization, DNA binding, and the recruitment of coactivators occur. Target genes are transcribed (mRNA) and translated into proteins.[1][2][3][4]

The androgen receptor (AR), also known as NR3C4 (nuclear receptor subfamily 3, group C, member 4), is a type of nuclear receptor[5] that is activated by binding any of the androgenic hormones, including testosterone and dihydrotestosterone,[6] in the cytoplasm and then translocating into the nucleus. The androgen receptor is most closely related to the progesterone receptor, and progestins in higher dosages can block the androgen receptor.[7][8]

The main function of the androgen receptor is as a DNA-binding transcription factor that regulates gene expression;[9] however, the androgen receptor has other functions as well.[10] Androgen-regulated genes are critical for the development and maintenance of the male sexual phenotype.

Function

Effect on development

In some cell types, testosterone interacts directly with androgen receptors, whereas, in others, testosterone is converted by 5-alpha-reductase to dihydrotestosterone, an even more potent agonist for androgen receptor activation.[11] Testosterone appears to be the primary androgen receptor-activating hormone in the Wolffian duct, whereas dihydrotestosterone is the main androgenic hormone in the urogenital sinus, urogenital tubercle, and hair follicles.[12] Testosterone is therefore responsible primarily for the development of male primary sexual characteristics, whilst dihydrotestosterone is responsible for secondary male characteristics.

Androgens cause slow maturation of the bones, but more of the potent maturation effect comes from the estrogen produced by aromatization of androgens. Steroid users of teen age may find that their growth had been stunted by androgen and/or estrogen excess. People with too little sex hormones can be short during puberty but end up taller as adults as in androgen insensitivity syndrome or estrogen insensitivity syndrome.[13]

Knockout-mice studies have shown that the androgen receptor is essential for normal female fertility, being required for development and full functionality of the ovarian follicles and ovulation, working through both intra-ovarian and neuroendocrine mechanisms.[14]

Maintenance of male skeletal integrity

Via the androgen receptor, androgens play a key role in the maintenance of male skeletal integrity. The regulation of this integrity by androgen receptor (AR) signaling can be attributed to both osteoblasts and osteocytes.[15]

Role in females

The AR plays a role in regulating female sexual, somatic, and behavioral functions. Experimental data using AR knockout female mice, provides evidence that the promotion of cardiac growth, kidney hypertrophy, cortical bone growth and regulation of trabecular bone structure is a result of DNA-binding-dependent actions of the AR in females.

Moreover, the importance of understanding female androgen receptors lies in their role in several genetic disorders including androgen insensitivity syndrome (AIS). Complete (CAIS) and partial (PAIS) which are a result of mutations in the genes that code for AR. These mutations cause the inactivation of AR due to mutations conferring resistance to circulating testosterone, with more than 400 different AR mutations reported.[citation needed]

Mechanism of action

Genomic

The primary mechanism of action for androgen receptors is direct regulation of gene transcription.

Androgens (also called androgenic hormones), such as testosterone or dihydrotestosterone, are understood to exert their primary effects through binding to an androgen receptor in the cytosol. The receptor is translocated to the nucleus upon androgen binding and ultimately results in the transcriptional regulation of a number of genes via androgen responsive elements.[16] This androgen response mechanism is perhaps best known and characterized in the context of male sexual differentiation and puberty, but plays a role in a variety of tissue types and processes.[17][18] Upon binding to androgens, the androgen receptor dissociates from accessory proteins, translocates into the nucleus, dimerizes, and then stimulates transcription of androgen-responsive genes.[19]

The binding of an androgen to the androgen receptor results in a conformational change in the receptor that, in turn, causes dissociation of heat shock proteins, transport from the cytosol into the cell nucleus, and dimerization. The androgen receptor dimer binds to a specific sequence of DNA known as a hormone response element, where it forms macromolacular protein condensates that might facilitate rapid gene regulation as consequence of local high protein concentrations together with other coregulators.[20] Androgen receptors interact with other proteins in the nucleus, resulting in up- or down-regulation of specific gene transcription.[21] Up-regulation or activation of transcription results in increased synthesis of messenger RNA, which, in turn, is translated by ribosomes to produce specific proteins. One of the known target genes of androgen receptor activation is the insulin-like growth factor 1 receptor (IGF-1R).[22] Thus, changes in levels of specific proteins in cells is one way that androgen receptors control cell behavior.

One function of androgen receptor that is independent of direct binding to its target DNA sequence is facilitated by recruitment via other DNA-binding proteins. One example is serum response factor, a protein that activates several genes that cause muscle growth.[23]

Androgen receptor is modified by post-translational modification through acetylation,[24] which directly promotes AR-mediated transactivation, apoptosis[25] and contact-independent growth of prostate cancer cells.[26] AR acetylation is induced by androgens[27] and determines recruitment into chromatin.[28] The AR acetylation site is a key target of NAD-dependent and TSA-dependent histone deacetylases[29] and long non-coding RNA.[30]

Non-genomic

More recently, androgen receptors have been shown to have a second mode of action. As has been also found for other steroid hormone receptors such as estrogen receptors, androgen receptors can have actions that are independent of their interactions with DNA.[10][31] Androgen receptors interact with certain signal transduction proteins in the cytoplasm. Androgen binding to cytoplasmic androgen receptors can cause rapid changes in cell function independent of changes in gene transcription, such as changes in ion transport. Regulation of signal transduction pathways by cytoplasmic androgen receptors can indirectly lead to changes in gene transcription, for example, by leading to phosphorylation of other transcription factors.

Genetics

Gene

In humans, the androgen receptor is encoded by the AR gene located on the X chromosome at Xq11–12.[32][33]

Deficiencies

At least 165 disease-causing mutations in this gene have been discovered.[34] The androgen insensitivity syndrome, formerly known as testicular feminization, is caused by a mutation in the androgen receptor gene on the X chromosome (locus: Xq11–Xq12).[35] The androgen receptor seems to affect neuron physiology and is defective in Kennedy's disease.[36][37] In addition, point mutations and trinucleotide repeat polymorphisms have been linked to a number of additional disorders.[38]

CAG repeats

The AR gene contains CAG repeats that affect receptor function, where fewer repeats leads to increased receptor sensitivity to circulating androgens and more repeats leads to decreased receptor sensitivity. Studies have shown that racial variation in CAG repeats exists,[39][40] with African-Americans having fewer repeats than non-Hispanic white Americans.[39] The racial trends in CAG repeats parallels the incidence and mortality of prostate cancer in these two groups.

Mutations

The enhancer and the gene encoding for these receptors contain recurrent mutations, such as structural rearrangements and copy number changes, acquired in the progression of metastatic castration-resistant prostate cancer (mCRPC) treatment with therapy targeting these receptors (abiraterone, enzalutamide), make the disease progression determined by the androgen receptor genotype.[41]

Structure

Structural domains of the two isoforms (AR-A and AR-B) of the human androgen receptor. Numbers above the bars refer to the amino acid residues that separate the domains starting from the N-terminus (left) to C-terminus (right). NTD = N-terminal domain, DBD = DNA-binding domain, LBD = ligand-binding domain, AF = activation function.

Isoforms

Two isoforms of the androgen receptor (A and B) have been identified:[42]

  • AR-A – 87 kDa; N-terminus truncated (lacks the first 187 amino acids), which results from in vitro proteolysis.[43]
  • AR-B – 110 kDa; full length

Domains

Like other nuclear receptors, the androgen receptor is modular in structure and is composed of the following functional domains labeled A through F:[44]

  • A/B) – N-terminal regulatory domain contains:[45]
    • activation function 1 (AF-1) between residues 101 and 370 required for full ligand-activated transcriptional activity
    • activation function 5 (AF-5) between residues 360–485 is responsible for the constitutive activity (activity without bound ligand)
    • dimerization surface involving residues 1–36 (containing the FXXLF motif; where F = phenylalanine, L = leucine, and X = any amino acid residue) and 370–494, both of which interact with the ligand binding domain (LBD) in an intramolecular[46][47][48] head-to-tail interaction[49][50][51]
  • C) – DNA binding domain (DBD)
  • D) – Hinge region; flexible region that connects the DBD with the LBD; along with the DBD, contains a ligand dependent nuclear localization signal[52]
  • E) – Ligand binding domain (LBD) containing
    • activation function 2 (AF-2), responsible for agonist induced activity (activity in the presence of bound agonist)
    • AF-2 binds either the N-terminal FXXFL motif intramolecularly or coactivator proteins (containing the LXXLL or preferably FXXFL motifs)[51]
    • A ligand dependent nuclear export signal[53]
  • F) – C-terminal domain

Splice variants

AR-V7 is an androgen receptor splice variant that can be detected in circulating tumor cells of metastatic prostate cancer patients[54][55] and is predictive of resistance to some drugs.[56]

Clinical significance

High expression in androgen receptor has been linked to aggression and sex drive by affecting the HPA and HPG axis[57]

Aberrant androgen receptor coregulator activity may contribute to the progression of prostate cancer.[58][41]

Ligands

Agonists

Mixed

Antagonists

As a drug target

The AR is an important therapeutic target in prostate cancer. Thus many different antiandrogens have been developed, primarily targeting the ligand-binding domain of the protein.[60] AR ligands can either be classified based on their structure (steroidal or nonsteroidal) or based on their ability to activate or inhibit transcription (agonists or antagonists).[61] Inhibitors that target alternative functional domains (N-terminal domain, DNA-binding domain) of the protein are still under development.[59]

Drug resistance

Alteration of ARs may lead to treatment resistance (castration resistance) in prostate cancer as there may be missense mutations of the ligand binding domain, amplifications of the gene coding for this receptor or in its enhancer, mostly, suggesting the presence of different subclones with different genotypes of these receptors.[41]

Interactions

Androgen receptor has been shown to interact with:



See also

References

  1. "Androgen receptor defects: historical, clinical, and molecular perspectives". Endocrine Reviews 16 (3): 271–321. June 1995. doi:10.1210/edrv-16-3-271. PMID 7671849. 
  2. "Molecular pathology of the androgen receptor in male (in)fertility". Reproductive Biomedicine Online 10 (1): 42–8. January 2005. doi:10.1016/S1472-6483(10)60802-4. PMID 15705293. 
  3. "Trinucleotide repeats in the human androgen receptor: a molecular basis for disease". Journal of Molecular Endocrinology 21 (3): 235–57. December 1998. doi:10.1677/jme.0.0210235. PMID 9845666. 
  4. "Androgens and androgen receptor in prostate and ovarian malignancies". Frontiers in Bioscience 8 (1–3): d780–800. May 2003. doi:10.2741/1063. PMID 12700055. 
  5. "International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors". Pharmacological Reviews 58 (4): 782–97. December 2006. doi:10.1124/pr.58.4.9. PMID 17132855. 
  6. Regulation of androgen action. Vitamins & Hormones. 55. 1999. pp. 309–52. doi:10.1016/S0083-6729(08)60938-3. ISBN 978-0-12-709855-5. 
  7. "Progestins can mimic, inhibit and potentiate the actions of androgens". Pharmacology & Therapeutics 23 (3): 443–59. 1983. doi:10.1016/0163-7258(83)90023-2. PMID 6371845. 
  8. "Progestogens with antiandrogenic properties". Drugs 63 (5): 463–92. 2003. doi:10.2165/00003495-200363050-00003. PMID 12600226. 
  9. "Biological actions of androgens". Endocrine Reviews 8 (1): 1–28. February 1987. doi:10.1210/edrv-8-1-1. PMID 3549275. 
  10. 10.0 10.1 "The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions". Molecular Endocrinology 16 (10): 2181–7. October 2002. doi:10.1210/me.2002-0070. PMID 12351684. 
  11. "Androgen physiology". Seminars in Reproductive Medicine 24 (2): 71–7. April 2006. doi:10.1055/s-2006-939565. PMID 16633980. 
  12. "Sexual differentiation". Journal of Endocrinological Investigation 26 (3 Suppl): 23–28. 2003. PMID 12834017. 
  13. "Role of estrogen and androgen in pubertal skeletal physiology". Medical and Pediatric Oncology 41 (3): 217–21. September 2003. doi:10.1002/mpo.10340. PMID 12868122. 
  14. "Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models". Human Reproduction Update 16 (5): 543–58. March 2010. doi:10.1093/humupd/dmq003. PMID 20231167. 
  15. "Androgen receptor (AR) in osteocytes is important for the maintenance of male skeletal integrity: evidence from targeted AR disruption in mouse osteocytes". Journal of Bone and Mineral Research 27 (12): 2535–43. December 2012. doi:10.1002/jbmr.1713. PMID 22836391. 
  16. "Molecular biology of the androgen receptor". Journal of Clinical Oncology 20 (13): 3001–3015. July 2002. doi:10.1200/JCO.2002.10.018. PMID 12089231. 
  17. "Mechanism of androgen receptor action". Maturitas 63 (2): 142–148. June 2009. doi:10.1016/j.maturitas.2009.03.008. PMID 19372015. 
  18. "Alternative androgen pathways". WikiJournal of Medicine 10: X. 2023. doi:10.15347/WJM/2023.003. 
  19. "Regulation of the androgen receptor by post-translational modifications". The Journal of Endocrinology 215 (2): 221–237. November 2012. doi:10.1530/JOE-12-0238. PMID 22872761. 
  20. "Compartmentalization of androgen receptors at endogenous genes in living cells". Nucleic Acid Research 51 (20): 10992–11009. October 2023. doi:10.1093/nar/gkad803. PMID 37791849. 
  21. "Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex". Endocrine Reviews 28 (7): 778–808. December 2007. doi:10.1210/er.2007-0019. PMID 17940184. 
  22. "Androgens up-regulate the insulin-like growth factor-I receptor in prostate cancer cells". Cancer Research 65 (5): 1849–57. March 2005. doi:10.1158/0008-5472.CAN-04-1837. PMID 15753383. 
  23. "Recruitment of the androgen receptor via serum response factor facilitates expression of a myogenic gene". The Journal of Biological Chemistry 280 (9): 7786–92. March 2005. doi:10.1074/jbc.M413992200. PMID 15623502. 
  24. "p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation". The Journal of Biological Chemistry 275 (27): 20853–60. July 2000. doi:10.1074/jbc.M000660200. PMID 10779504. 
  25. "Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function". Molecular and Cellular Biology 22 (10): 3373–88. May 2002. doi:10.1128/mcb.22.10.3373-3388.2002. PMID 11971970. 
  26. "Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth". Molecular and Cellular Biology 23 (23): 8563–75. December 2003. doi:10.1128/mcb.23.23.8563-8575.2003. PMID 14612401. 
  27. "Activation of p300 histone acetyltransferase activity and acetylation of the androgen receptor by bombesin in prostate cancer cells". Oncogene 25 (14): 2011–21. March 2006. doi:10.1038/sj.onc.1209231. PMID 16434977. 
  28. "The androgen receptor acetylation site regulates cAMP and AKT but not ERK-induced activity". The Journal of Biological Chemistry 279 (28): 29436–49. July 2004. doi:10.1074/jbc.M313466200. PMID 15123687. 
  29. 29.0 29.1 "Hormonal control of androgen receptor function through SIRT1". Molecular and Cellular Biology 26 (21): 8122–35. November 2006. doi:10.1128/MCB.00289-06. PMID 16923962. 
  30. "lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs". Nature 500 (7464): 598–602. August 2013. doi:10.1038/nature12451. PMID 23945587. Bibcode2013Natur.500..598Y. 
  31. "Testosterone activates mitogen-activated protein kinase and the cAMP response element binding protein transcription factor in Sertoli cells". Proceedings of the National Academy of Sciences of the United States of America 101 (30): 10919–24. July 2004. doi:10.1073/pnas.0404278101. PMID 15263086. Bibcode2004PNAS..10110919F. 
  32. "Molecular cloning of human and rat complementary DNA encoding androgen receptors". Science 240 (4850): 324–6. April 1988. doi:10.1126/science.3353726. PMID 3353726. Bibcode1988Sci...240..324C. 
  33. "Cloning, structure and expression of a cDNA encoding the human androgen receptor". Biochemical and Biophysical Research Communications 153 (1): 241–8. May 1988. doi:10.1016/S0006-291X(88)81214-2. PMID 3377788. 
  34. "Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases". Scientific Reports 9 (1): 18577. December 2019. doi:10.1038/s41598-019-54976-4. PMID 31819097. Bibcode2019NatSR...918577S. 
  35. "Human androgen insensitivity syndrome". Journal of Andrology 16 (4): 299–303. 1995. doi:10.1002/j.1939-4640.1995.tb00533.x. PMID 8537246. 
  36. "Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait". Neurology 18 (7): 671–80. July 1968. doi:10.1212/WNL.18.7.671. PMID 4233749. 
  37. "Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model". The Journal of Clinical Investigation 116 (10): 2663–72. October 2006. doi:10.1172/JCI28773. PMID 16981011. 
  38. "Phenotypic heterogeneity of mutations in androgen receptor gene". Asian Journal of Andrology 9 (2): 147–79. March 2007. doi:10.1111/j.1745-7262.2007.00250.x. PMID 17334586. 
  39. 39.0 39.1 "Androgen receptor gene CAG repeat length varies in a race-specific fashion in men without prostate cancer". Urology 53 (2): 378–80. February 1999. doi:10.1016/s0090-4295(98)00481-6. PMID 9933058. 
  40. "The effect of CAG repeats length on differences in hirsutism among healthy Israeli women of different ethnicities". PLOS ONE 13 (3): e0195046. 2018. doi:10.1371/journal.pone.0195046. PMID 29584789. Bibcode2018PLoSO..1395046W. 
  41. 41.0 41.1 41.2 "Deep whole-genome ctDNA chronology of treatment-resistant prostate cancer". Nature 608 (7921): 199–208. August 2022. doi:10.1038/s41586-022-04975-9. PMID 35859180. Bibcode2022Natur.608..199H. 
  42. "A and B forms of the androgen receptor are present in human genital skin fibroblasts". Proceedings of the National Academy of Sciences of the United States of America 91 (4): 1234–8. February 1994. doi:10.1073/pnas.91.4.1234. PMID 8108393. Bibcode1994PNAS...91.1234W. 
  43. "The putative androgen receptor-A form results from in vitro proteolysis". Journal of Molecular Endocrinology 27 (3): 309–19. December 2001. doi:10.1677/jme.0.0270309. PMID 11719283. 
  44. "Structure and function of the androgen receptor". Urological Research 17 (2): 87–93. 1989. doi:10.1007/BF00262026. PMID 2734982. 
  45. "Identification of two transcription activation units in the N-terminal domain of the human androgen receptor". The Journal of Biological Chemistry 270 (13): 7341–6. March 1995. doi:10.1074/jbc.270.13.7341. PMID 7706276. https://repub.eur.nl/pub/54442/REPUB_54442_OA.pdf. 
  46. "The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions". Proceedings of the National Academy of Sciences of the United States of America 102 (28): 9802–7. July 2005. doi:10.1073/pnas.0408819102. PMID 15994236. Bibcode2005PNAS..102.9802S. 
  47. "Ligand-specific dynamics of the androgen receptor at its response element in living cells". Molecular and Cellular Biology 27 (5): 1823–43. March 2007. doi:10.1128/MCB.01297-06. PMID 17189428. 
  48. "Compartmentalization of androgen receptor protein-protein interactions in living cells". The Journal of Cell Biology 177 (1): 63–72. April 2007. doi:10.1083/jcb.200609178. PMID 17420290. 
  49. "Evidence for an anti-parallel orientation of the ligand-activated human androgen receptor dimer". The Journal of Biological Chemistry 270 (50): 29983–90. December 1995. doi:10.1074/jbc.270.50.29983. PMID 8530400. 
  50. "Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2)". Molecular Endocrinology 12 (8): 1172–83. August 1998. doi:10.1210/mend.12.8.0153. PMID 9717843. 
  51. 51.0 51.1 "Distinct recognition modes of FXXLF and LXXLL motifs by the androgen receptor". Molecular Endocrinology 18 (9): 2132–50. September 2004. doi:10.1210/me.2003-0375. PMID 15178743. 
  52. "Characterization of nuclear import of the domain-specific androgen receptor in association with the importin alpha/beta and Ran-guanosine 5'-triphosphate systems". Endocrinology 149 (8): 3960–9. August 2008. doi:10.1210/en.2008-0137. PMID 18420738. 
  53. "Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor". The Journal of Biological Chemistry 278 (43): 41998–2005. October 2003. doi:10.1074/jbc.M302460200. PMID 12923188. 
  54. "Novel Insights into Molecular Indicators of Response and Resistance to Modern Androgen-Axis Therapies in Prostate Cancer" (in en). Current Urology Reports 17 (4): 29. April 2016. doi:10.1007/s11934-016-0584-4. PMID 26902623. 
  55. "AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer". The New England Journal of Medicine 371 (11): 1028–38. September 2014. doi:10.1056/NEJMoa1315815. PMID 25184630. 
  56. "Biomarker-Driven Therapy With Nivolumab and Ipilimumab in Treating Patients With Metastatic Hormone-Resistant Prostate Cancer Expressing AR-V7 - Full Text View - ClinicalTrials.gov". https://clinicaltrials.gov/ct2/show/NCT02601014. 
  57. "Androgen receptors, sex behavior, and aggression". Neuroendocrinology 96 (2): 131–40. 2012. doi:10.1159/000337663. PMID 22414851. 
  58. "Androgen receptor (AR) coregulators: an overview". Endocrine Reviews 23 (2): 175–200. April 2002. doi:10.1210/edrv.23.2.0460. PMID 11943742. 
  59. 59.0 59.1 "Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain". Medicinal Research Reviews 39 (3): 910–960. 22 November 2018. doi:10.1002/med.21548. PMID 30565725. 
  60. "Androgen receptor antagonists for prostate cancer therapy". Endocrine-Related Cancer 21 (4): T105–18. August 2014. doi:10.1530/ERC-13-0545. PMID 24639562. 
  61. "Chemistry and structural biology of androgen receptor". Chemical Reviews 105 (9): 3352–70. September 2005. doi:10.1021/cr020456u. PMID 16159155. 
  62. 62.0 62.1 "Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor". Proceedings of the National Academy of Sciences of the United States of America 98 (13): 7200–5. June 2001. doi:10.1073/pnas.121173298. PMID 11404460. Bibcode2001PNAS...98.7200L. 
  63. "The cochaperone Bag-1L enhances androgen receptor action via interaction with the NH2-terminal region of the receptor". Molecular and Cellular Biology 23 (20): 7189–97. October 2003. doi:10.1128/MCB.23.20.7189-7197.2003. PMID 14517289. 
  64. "Structure-function analysis of Bag1 proteins. Effects on androgen receptor transcriptional activity". The Journal of Biological Chemistry 276 (16): 12718–24. April 2001. doi:10.1074/jbc.M010841200. PMID 11278763. 
  65. "BAG-1L protein enhances androgen receptor function". The Journal of Biological Chemistry 273 (19): 11660–6. May 1998. doi:10.1074/jbc.273.19.11660. PMID 9565586. 
  66. 66.0 66.1 66.2 66.3 "Antiandrogen effects of mifepristone on coactivator and corepressor interactions with the androgen receptor". Molecular Endocrinology 18 (1): 70–85. January 2004. doi:10.1210/me.2003-0189. PMID 14593076. 
  67. 67.0 67.1 67.2 "Recruitment of beta-catenin by wild-type or mutant androgen receptors correlates with ligand-stimulated growth of prostate cancer cells". Molecular Endocrinology 18 (10): 2388–401. October 2004. doi:10.1210/me.2003-0436. PMID 15256534. 
  68. "Linking beta-catenin to androgen-signaling pathway". The Journal of Biological Chemistry 277 (13): 11336–44. March 2002. doi:10.1074/jbc.M111962200. PMID 11792709. 
  69. "A direct beta-catenin-independent interaction between androgen receptor and T cell factor 4". The Journal of Biological Chemistry 278 (33): 30828–34. August 2003. doi:10.1074/jbc.M301208200. PMID 12799378. 
  70. "Functional localization and competition between the androgen receptor and T-cell factor for nuclear beta-catenin: a means for inhibition of the Tcf signaling axis". Oncogene 22 (36): 5602–13. August 2003. doi:10.1038/sj.onc.1206802. PMID 12944908. 
  71. "Liganded androgen receptor interaction with beta-catenin: nuclear co-localization and modulation of transcriptional activity in neuronal cells". The Journal of Biological Chemistry 277 (23): 20702–10. June 2002. doi:10.1074/jbc.M200545200. PMID 11916967. 
  72. "Breast cancer susceptibility gene 1 (BRCAI) is a coactivator of the androgen receptor". Cancer Research 60 (21): 5946–9. November 2000. PMID 11085509. 
  73. "Increase of androgen-induced cell death and androgen receptor transactivation by BRCA1 in prostate cancer cells". Proceedings of the National Academy of Sciences of the United States of America 97 (21): 11256–61. October 2000. doi:10.1073/pnas.190353897. PMID 11016951. Bibcode2000PNAS...9711256Y. 
  74. "Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCaP". The Journal of Biological Chemistry 272 (28): 17485–94. July 1997. doi:10.1074/jbc.272.28.17485. PMID 9211894. 
  75. "Physical and functional interaction of androgen receptor with calmodulin in prostate cancer cells". Proceedings of the National Academy of Sciences of the United States of America 101 (2): 464–9. January 2004. doi:10.1073/pnas.0307161101. PMID 14695896. Bibcode2004PNAS..101..464C. 
  76. "Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation". The Journal of Biological Chemistry 276 (16): 13442–51. April 2001. doi:10.1074/jbc.M006598200. PMID 11278309. 
  77. "Androgen receptor interacts with the positive elongation factor P-TEFb and enhances the efficiency of transcriptional elongation". The Journal of Biological Chemistry 276 (13): 9978–84. March 2001. doi:10.1074/jbc.M002285200. PMID 11266437. 
  78. "Cytochrome c oxidase subunit Vb interacts with human androgen receptor: a potential mechanism for neurotoxicity in spinobulbar muscular atrophy". Brain Research Bulletin 56 (3–4): 285–97. 2001. doi:10.1016/S0361-9230(01)00583-4. PMID 11719263. 
  79. "The role of protein kinase A pathway and cAMP responsive element-binding protein in androgen receptor-mediated transcription at the prostate-specific antigen locus". Journal of Molecular Endocrinology 34 (1): 107–18. February 2005. doi:10.1677/jme.1.01701. PMID 15691881. 
  80. "CREB binding protein is a coactivator for the androgen receptor and mediates cross-talk with AP-1". The Journal of Biological Chemistry 273 (48): 31853–9. November 1998. doi:10.1074/jbc.273.48.31853. PMID 9822653. 
  81. 81.0 81.1 81.2 "p54nrb acts as a transcriptional coactivator for activation function 1 of the human androgen receptor". Biochemical and Biophysical Research Communications 306 (3): 660–5. July 2003. doi:10.1016/S0006-291X(03)01021-0. PMID 12810069. 
  82. "CREB-binding protein in androgen receptor-mediated signaling". Proceedings of the National Academy of Sciences of the United States of America 95 (5): 2122–7. March 1998. doi:10.1073/pnas.95.5.2122. PMID 9482849. Bibcode1998PNAS...95.2122A. 
  83. "Cyclin D1 binds activating mutants of the androgen receptor". US Endocrine Society Meeting (P1–528). 1998. 
  84. "Cyclin D1 binds the androgen receptor and regulates hormone-dependent signaling in a p300/CBP-associated factor (P/CAF)-dependent manner". Molecular Endocrinology 15 (5): 797–811. May 2001. doi:10.1210/mend.15.5.0641. PMID 11328859. 
  85. "A central domain of cyclin D1 mediates nuclear receptor corepressor activity". Oncogene 24 (3): 431–44. January 2005. doi:10.1038/sj.onc.1208200. PMID 15558026. 
  86. "D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability". Cancer Research 59 (10): 2297–301. May 1999. PMID 10344732. 
  87. "From androgen receptor to the general transcription factor TFIIH. Identification of cdk activating kinase (CAK) as an androgen receptor NH(2)-terminal associated coactivator". The Journal of Biological Chemistry 275 (13): 9308–13. March 2000. doi:10.1074/jbc.275.13.9308. PMID 10734072. 
  88. "The cell fate determination factor dachshund inhibits androgen receptor signaling and prostate cancer cellular growth". Cancer Research 69 (8): 3347–55. April 2009. doi:10.1158/0008-5472.CAN-08-3821. PMID 19351840. 
  89. "Negative modulation of androgen receptor transcriptional activity by Daxx". Molecular and Cellular Biology 24 (24): 10529–41. December 2004. doi:10.1128/MCB.24.24.10529-10541.2004. PMID 15572661. 
  90. "Isolation and identification of L-dopa decarboxylase as a protein that binds to and enhances transcriptional activity of the androgen receptor using the repressed transactivator yeast two-hybrid system". The Biochemical Journal 375 (Pt 2): 373–83. October 2003. doi:10.1042/BJ20030689. PMID 12864730. 
  91. "DJBP: a novel DJ-1-binding protein, negatively regulates the androgen receptor by recruiting histone deacetylase complex, and DJ-1 antagonizes this inhibition by abrogation of this complex". Molecular Cancer Research 1 (4): 247–61. February 2003. PMID 12612053. 
  92. "EGF receptor (EGFR) signaling promoting invasion is disrupted in androgen-sensitive prostate cancer cells by an interaction between EGFR and androgen receptor (AR)". International Journal of Cancer 112 (1): 78–86. October 2004. doi:10.1002/ijc.20362. PMID 15305378. https://flore.unifi.it/bitstream/2158/395766/1/Bonaccoris%20et%20al%20IJC.pdf. 
  93. "The androgen receptor associates with the epidermal growth factor receptor in androgen-sensitive prostate cancer cells". Steroids 69 (8–9): 549–52. August 2004. doi:10.1016/j.steroids.2004.05.011. PMID 15288768. 
  94. "AKT-independent protection of prostate cancer cells from apoptosis mediated through complex formation between the androgen receptor and FKHR". Molecular and Cellular Biology 23 (1): 104–18. January 2003. doi:10.1128/MCB.23.1.104-118.2003. PMID 12482965. 
  95. "Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3-phosphate dehydrogenase". Human Molecular Genetics 5 (9): 1311–8. September 1996. doi:10.1093/hmg/5.9.1311. PMID 8872471. 
  96. "Modulation of androgen receptor transactivation by gelsolin: a newly identified androgen receptor coregulator". Cancer Research 63 (16): 4888–94. August 2003. PMID 12941811. 
  97. "The scaffolding protein RACK1 interacts with androgen receptor and promotes cross-talk through a protein kinase C signaling pathway". The Journal of Biological Chemistry 278 (46): 46087–93. November 2003. doi:10.1074/jbc.M306219200. PMID 12958311. 
  98. "Suppression of androgen receptor-mediated transactivation and cell growth by the glycogen synthase kinase 3 beta in prostate cells". The Journal of Biological Chemistry 279 (31): 32444–52. July 2004. doi:10.1074/jbc.M313963200. PMID 15178691. 
  99. 99.0 99.1 "Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor". The Journal of Biological Chemistry 277 (29): 25904–13. July 2002. doi:10.1074/jbc.M203423200. PMID 11994312. 
  100. "Anti-androgens and the mutated androgen receptor of LNCaP cells: differential effects on binding affinity, heat-shock protein interaction, and transcription activation". Biochemistry 31 (8): 2393–9. March 1992. doi:10.1021/bi00123a026. PMID 1540595. 
  101. "Association of the 90-kDa heat shock protein does not affect the ligand-binding ability of androgen receptor". The Journal of Steroid Biochemistry and Molecular Biology 42 (8): 803–12. September 1992. doi:10.1016/0960-0760(92)90088-Z. PMID 1525041. 
  102. 102.0 102.1 "Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction". Molecular and Cellular Biology 25 (4): 1238–57. February 2005. doi:10.1128/MCB.25.4.1238-1257.2005. PMID 15684378. 
  103. "Epidermal-growth-factor-dependent phosphorylation and ubiquitinylation of MAGE-11 regulates its interaction with the androgen receptor". Molecular and Cellular Biology 28 (6): 1947–63. March 2008. doi:10.1128/MCB.01672-07. PMID 18212060. 
  104. "A coregulatory role for the TRAP-mediator complex in androgen receptor-mediated gene expression". The Journal of Biological Chemistry 277 (45): 42852–8. November 2002. doi:10.1074/jbc.M206061200. PMID 12218053. 
  105. "Androgen receptor interacts with a novel MYST protein, HBO1". The Journal of Biological Chemistry 275 (45): 35200–8. November 2000. doi:10.1074/jbc.M004838200. PMID 10930412. 
  106. "Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells". The Journal of Biological Chemistry 277 (41): 38087–94. October 2002. doi:10.1074/jbc.M203313200. PMID 12163482. 
  107. "The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1". Molecular and Cellular Biology 19 (12): 8383–92. December 1999. doi:10.1128/mcb.19.12.8383. PMID 10567563. 
  108. 108.0 108.1 "Mechanistic relationship between androgen receptor polyglutamine tract truncation and androgen-dependent transcriptional hyperactivity in prostate cancer cells". The Journal of Biological Chemistry 279 (17): 17319–28. April 2004. doi:10.1074/jbc.M400970200. PMID 14966121. 
  109. 109.0 109.1 109.2 "Electrostatic modulation in steroid receptor recruitment of LXXLL and FXXLF motifs". Molecular and Cellular Biology 23 (6): 2135–50. March 2003. doi:10.1128/MCB.23.6.2135-2150.2003. PMID 12612084. 
  110. "Thyroid receptor activator molecule, TRAM-1, is an androgen receptor coactivator". Endocrinology 141 (9): 3440–50. September 2000. doi:10.1210/endo.141.9.7680. PMID 10965917. 
  111. "Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer". British Journal of Cancer 85 (12): 1928–36. December 2001. doi:10.1054/bjoc.2001.2179. PMID 11747336. 
  112. 112.0 112.1 112.2 "The FXXLF motif mediates androgen receptor-specific interactions with coregulators". The Journal of Biological Chemistry 277 (12): 10226–35. March 2002. doi:10.1074/jbc.M111975200. PMID 11779876. 
  113. "Interaction of the putative androgen receptor-specific coactivator ARA70/ELE1alpha with multiple steroid receptors and identification of an internally deleted ELE1beta isoform". Molecular Endocrinology 13 (1): 117–28. January 1999. doi:10.1210/mend.13.1.0214. PMID 9892017. 
  114. "Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells". Proceedings of the National Academy of Sciences of the United States of America 93 (11): 5517–21. May 1996. doi:10.1073/pnas.93.11.5517. PMID 8643607. Bibcode1996PNAS...93.5517Y. 
  115. "Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 cells". Proceedings of the National Academy of Sciences of the United States of America 95 (13): 7379–84. June 1998. doi:10.1073/pnas.95.13.7379. PMID 9636157. Bibcode1998PNAS...95.7379M. 
  116. "From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells". Proceedings of the National Academy of Sciences of the United States of America 96 (10): 5458–63. May 1999. doi:10.1073/pnas.96.10.5458. PMID 10318905. Bibcode1999PNAS...96.5458Y. 
  117. "Domain interactions between coregulator ARA(70) and the androgen receptor (AR)". Molecular Endocrinology 16 (2): 287–300. February 2002. doi:10.1210/mend.16.2.0765. PMID 11818501. 
  118. "RFG (ARA70, ELE1) interacts with the human androgen receptor in a ligand-dependent fashion, but functions only weakly as a coactivator in cotransfection assays". Molecular Endocrinology 13 (10): 1645–56. October 1999. doi:10.1210/mend.13.10.0352. PMID 10517667. 
  119. "Interactions between activating signal cointegrator-2 and the tumor suppressor retinoblastoma in androgen receptor transactivation". The Journal of Biological Chemistry 279 (8): 7131–5. February 2004. doi:10.1074/jbc.M312563200. PMID 14645241. 
  120. "Regulation of androgen receptor activity by the nuclear receptor corepressor SMRT". The Journal of Biological Chemistry 278 (7): 5052–61. February 2003. doi:10.1074/jbc.M206374200. PMID 12441355. 
  121. "The amino terminus of the human AR is target for corepressor action and antihormone agonism". Molecular Endocrinology 16 (4): 661–73. April 2002. doi:10.1210/mend.16.4.0798. PMID 11923464. 
  122. "p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation". The Journal of Biological Chemistry 275 (27): 20853–60. July 2000. doi:10.1074/jbc.M000660200. PMID 10779504. 
  123. "Repression of androgen receptor mediated transcription by the ErbB-3 binding protein, Ebp1". Oncogene 21 (36): 5609–18. August 2002. doi:10.1038/sj.onc.1205638. PMID 12165860. 
  124. "Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6". The Journal of Biological Chemistry 276 (18): 15345–53. May 2001. doi:10.1074/jbc.M010311200. PMID 11278661. 
  125. "AR and ER interaction with a p21-activated kinase (PAK6)". Molecular Endocrinology 16 (1): 85–99. January 2002. doi:10.1210/mend.16.1.0753. PMID 11773441. 
  126. 126.0 126.1 "PATZ attenuates the RNF4-mediated enhancement of androgen receptor-dependent transcription". The Journal of Biological Chemistry 277 (5): 3280–5. February 2002. doi:10.1074/jbc.M109491200. PMID 11719514. 
  127. "ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation". Molecular Endocrinology 14 (12): 1986–2000. December 2000. doi:10.1210/mend.14.12.0569. PMID 11117529. 
  128. "A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins". The Journal of Biological Chemistry 274 (6): 3700–4. February 1999. doi:10.1074/jbc.274.6.3700. PMID 9920921. 
  129. "Activation function-1 domain of androgen receptor contributes to the interaction between subnuclear splicing factor compartment and nuclear receptor compartment. Identification of the p102 U5 small nuclear ribonucleoprotein particle-binding protein as a coactivator for the receptor". The Journal of Biological Chemistry 277 (33): 30031–9. August 2002. doi:10.1074/jbc.M203811200. PMID 12039962. 
  130. 130.0 130.1 "Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells". Molecular Endocrinology 18 (10): 2409–23. October 2004. doi:10.1210/me.2004-0117. PMID 15205473. 
  131. "Human checkpoint protein hRad9 functions as a negative coregulator to repress androgen receptor transactivation in prostate cancer cells". Molecular and Cellular Biology 24 (5): 2202–13. March 2004. doi:10.1128/MCB.24.5.2202-2213.2004. PMID 14966297. 
  132. "RanBPM, a nuclear protein that interacts with and regulates transcriptional activity of androgen receptor and glucocorticoid receptor". The Journal of Biological Chemistry 277 (50): 48020–7. December 2002. doi:10.1074/jbc.M209741200. PMID 12361945. 
  133. "Cloning and characterization of an androgen receptor N-terminal-interacting protein with ubiquitin-protein ligase activity". Journal of Molecular Endocrinology 29 (1): 41–60. August 2002. doi:10.1677/jme.0.0290041. PMID 12200228. 
  134. "Differential regulation of androgen and glucocorticoid receptors by retinoblastoma protein". The Journal of Biological Chemistry 273 (47): 31528–33. November 1998. doi:10.1074/jbc.273.47.31528. PMID 9813067. 
  135. "Retinoblastoma, a tumor suppressor, is a coactivator for the androgen receptor in human prostate cancer DU145 cells". Biochemical and Biophysical Research Communications 248 (2): 361–7. July 1998. doi:10.1006/bbrc.1998.8974. PMID 9675141. 
  136. "A dominant-negative mutant of androgen receptor coregulator ARA54 inhibits androgen receptor-mediated prostate cancer growth". The Journal of Biological Chemistry 277 (7): 4609–17. February 2002. doi:10.1074/jbc.M108312200. PMID 11673464. 
  137. "Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor". The Journal of Biological Chemistry 274 (13): 8570–6. March 1999. doi:10.1074/jbc.274.13.8570. PMID 10085091. 
  138. "Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription". Molecular and Cellular Biology 18 (9): 5128–39. September 1998. doi:10.1128/mcb.18.9.5128. PMID 9710597. 
  139. "Coregulator small nuclear RING finger protein (SNURF) enhances Sp1- and steroid receptor-mediated transcription by different mechanisms". The Journal of Biological Chemistry 275 (1): 571–9. January 2000. doi:10.1074/jbc.275.1.571. PMID 10617653. 
  140. "Tip110, the human immunodeficiency virus type 1 (HIV-1) Tat-interacting protein of 110 kDa as a negative regulator of androgen receptor (AR) transcriptional activation". The Journal of Biological Chemistry 279 (21): 21766–73. May 2004. doi:10.1074/jbc.M314321200. PMID 15031286. 
  141. "The androgen receptor represses transforming growth factor-beta signaling through interaction with Smad3". The Journal of Biological Chemistry 277 (2): 1240–8. January 2002. doi:10.1074/jbc.M108855200. PMID 11707452. 
  142. "SMAD3 represses androgen receptor-mediated transcription". Cancer Research 61 (5): 2112–8. March 2001. PMID 11280774. 
  143. "Differential modulation of androgen receptor-mediated transactivation by Smad3 and tumor suppressor Smad4". The Journal of Biological Chemistry 277 (46): 43749–56. November 2002. doi:10.1074/jbc.M205603200. PMID 12226080. 
  144. "Characterization of the interaction between androgen receptor and a new transcriptional inhibitor, SHP". Biochemistry 40 (50): 15369–77. December 2001. doi:10.1021/bi011384o. PMID 11735420. 
  145. "Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence". Cancer Research 64 (19): 7156–68. October 2004. doi:10.1158/0008-5472.CAN-04-1121. PMID 15466214. 
  146. "Mechanisms of androgen receptor signalling via steroid receptor coactivator-1 in prostate". Endocrine-Related Cancer 11 (1): 117–30. March 2004. doi:10.1677/erc.0.0110117. PMID 15027889. 
  147. "SRY interacts with and negatively regulates androgen receptor transcriptional activity". The Journal of Biological Chemistry 276 (49): 46647–54. December 2001. doi:10.1074/jbc.M108404200. PMID 11585838. 
  148. "Cross-talk between signal transducer and activator of transcription 3 and androgen receptor signaling in prostate carcinoma cells". Biochemical and Biophysical Research Communications 283 (1): 179–87. April 2001. doi:10.1006/bbrc.2001.4758. PMID 11322786. 
  149. "Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways". The Journal of Biological Chemistry 277 (9): 7076–85. March 2002. doi:10.1074/jbc.M108255200. PMID 11751884. 
  150. "Supervillin associates with androgen receptor and modulates its transcriptional activity". Proceedings of the National Academy of Sciences of the United States of America 99 (2): 661–6. January 2002. doi:10.1073/pnas.022469899. PMID 11792840. Bibcode2002PNAS...99..661T. 
  151. "TR2 orphan receptor functions as negative modulator for androgen receptor in prostate cancer cells PC-3". The Prostate 57 (2): 129–33. October 2003. doi:10.1002/pros.10282. PMID 12949936. 
  152. "Convergence of two repressors through heterodimer formation of androgen receptor and testicular orphan receptor-4: a unique signaling pathway in the steroid receptor superfamily". Proceedings of the National Academy of Sciences of the United States of America 96 (26): 14724–9. December 1999. doi:10.1073/pnas.96.26.14724. PMID 10611280. Bibcode1999PNAS...9614724L. 
  153. "Suppression of androgen receptor transactivation by Pyk2 via interaction and phosphorylation of the ARA55 coregulator". The Journal of Biological Chemistry 277 (18): 15426–31. May 2002. doi:10.1074/jbc.M111218200. PMID 11856738. 
  154. "Isolation and characterization of ARA160 as the first androgen receptor N-terminal-associated coactivator in human prostate cells". The Journal of Biological Chemistry 274 (32): 22373–9. August 1999. doi:10.1074/jbc.274.32.22373. PMID 10428808. 
  155. "TRIM68 regulates ligand-dependent transcription of androgen receptor in prostate cancer cells". Cancer Research 68 (9): 3486–94. May 2008. doi:10.1158/0008-5472.CAN-07-6059. PMID 18451177. 
  156. "Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription". The Journal of Biological Chemistry 274 (27): 19441–6. July 1999. doi:10.1074/jbc.274.27.19441. PMID 10383460. 
  157. "FHL2, a novel tissue-specific coactivator of the androgen receptor". The EMBO Journal 19 (3): 359–69. February 2000. doi:10.1093/emboj/19.3.359. PMID 10654935. 
  158. "Inhibition of the dihydrotestosterone-activated androgen receptor by nuclear receptor corepressor". Molecular Endocrinology 16 (7): 1492–501. July 2002. doi:10.1210/mend.16.7.0870. PMID 12089345. 
  159. "The androgen receptor recruits nuclear receptor CoRepressor (N-CoR) in the presence of mifepristone via its N and C termini revealing a novel molecular mechanism for androgen receptor antagonists". The Journal of Biological Chemistry 280 (8): 6511–9. February 2005. doi:10.1074/jbc.M408972200. PMID 15598662. 
  160. "Identification and characterization of ART-27, a novel coactivator for the androgen receptor N terminus". Molecular Biology of the Cell 13 (2): 670–82. February 2002. doi:10.1091/mbc.01-10-0513. PMID 11854421. 
  161. "hZimp10 is an androgen receptor co-activator and forms a complex with SUMO-1 at replication foci". The EMBO Journal 22 (22): 6101–14. November 2003. doi:10.1093/emboj/cdg585. PMID 14609956. 

External links